Matemática, perguntado por melissauzumaki200, 11 meses atrás

Encontre a fração geratriz das dizímas a seguir
a)-2,444
b)0,111
c)17,888
d)-6,3535
e)0,292929
f)2,102102102

Soluções para a tarefa

Respondido por guaraciferreiraap
6

Resposta:

Explicação passo-a-passo:

a)  -2,444... = - 2 + 4\9 = -  2.9+4\9 = - 22\9

b)  0,111... = 1\9

c)  17,888... = 17 + 8\9 =

17.9+8\9 = 161\9

d)  -6,3535... = -  6 + 35\99 =

-  6.99+35\99 = - 629\99

e)  0,2929... = 29\99

f)  2,102102... = 2 + 102\999  =

2.999+102\999 = 2100\999 = 700\333

Respondido por Makaveli1996
4

Oie, Td Bom?!

a)

 ≈ - 2,444...

 =  - 2 \frac{444}{999}

 =  - \frac{2 \: . \: 999 + 444}{999}

 =  -  \frac{1998 + 444}{999}

 =  -  \frac{2442}{999}

 =  -  \frac{2442 \div 111}{999 \div 111}

 =  -  \frac{29}{9}

b)

≈0,111...

 = 0 \frac{111}{999}

 =  \frac{0 \: . \: 999 + 111}{999}

 =  \frac{0 + 111}{999}

 =  \frac{111}{999}

 =  \frac{111 \div 111}{999 \div 111}

 =  \frac{1}{9}

c)

≈17,888...

 = 17 \frac{888}{999}

 =  \frac{17 \: . \: 999 + 888}{999}

 =  \frac{16983 + 888}{999}

 =  \frac{17871}{999}

 =  \frac{17871 \div 111}{999 \div 111}

 =  \frac{161}{9}

d)

≈ - 6,3535...

 =   - 6\frac{3535}{9999}

 =  -  \frac{6 \: . \: 9999 + 3535}{9999}

 =  -  \frac{59994 + 3535}{9999}

 =   - \frac{63529}{9999}

 =  -  \frac{63529  \div 101}{9999 \div 101}

 =  -  \frac{629}{99}

e)

≈0,292929...

 = 0 \frac{292929}{999999}

 =  \frac{0 \: . \:999999 + 292929 }{999999}

 =  \frac{0 + 292929}{999999}

 =  \frac{292929}{999999}

 =  \frac{292929 \div 10101}{999999 \div 10101}

 =  \frac{29}{99}

f)

≈2,102102102...

 = 2 \frac{102102102}{999999999}

 =  \frac{2 \: . \: 999999999 + 102102102}{999999999}

 =  \frac{1999999998 + 102102102}{999999999}

 =  \frac{2102102100}{999999999}

 =  \frac{2102102100 \div 3003003}{999999999 \div 3003003}

 =  \frac{700}{333}

Att. Makaveli1996

Perguntas interessantes