Matemática, perguntado por geovanaol2612, 9 meses atrás

. Encontrar uma função f tal que f'(x) + senx =0 e f(0) = 2.​

Soluções para a tarefa

Respondido por larareginaca
0

Resposta:

sua vó quico e início o indos

Respondido por elizeugatao
2

\displaystyle \text{f'(x) + sen x = 0 }  \\\\ \text{f'(x)}=-\text{sen x}\\\\ \underline{\text{sabemos que}}: \\\\ \text{f'(x)} = \frac{\text{df}}{\text {dx}} \\\\\\ \frac{\text{df}}{\text {dx}} = -\text{sen x } \\\\\\ \int \text{df} = \int -\text{sen x dx }\\\\\\ \text f(\text x) = \text{cos x}+ \text C  \\\\ \text{usando a informa{\c c}{\~a}o do enunciado} \ \ \text{f(0) = 2}  : \\\\  \text{cos 0}+\text C = 2 \\\\ \text C = 2-1 \\\\ \text C = 1 \\\\ \underline{\text{portanto}}:

\huge\boxed{\ \text{f(x)} = \text{cos x}+ 1 \ } \checkmark

Perguntas interessantes