Física, perguntado por sahrarochap69gxv, 11 meses atrás

Em uma viagem a Júpiter, deseja-se construir uma nave espacial com uma seção rotacional para simular, por efeitos centrífugos, a gravidade. A seção terá um raio de 90 metros. Quantas rotações por minuto (RPM) deverá ter essa seção para simular a gravidade terrestre? (considere g = 10 m/s²).

Soluções para a tarefa

Respondido por bryanavs
51

Deverá ter x = 10/π  de rotações por minuto.

Vamos aos dados/resoluções:  

É sabido que a aceleração centrípeta pode ser calculada da seguinte forma:  

A = V²/r (I), no qual v é a velocidade e r é o raio de rotação, porém podemos calcular com: V = w . r (II) em que W é a velocidade angular. E a velocidade angular pode ser calculada como: W = 2 . π . f (III), no qual f é a frequência em Hz.  

Se substituirmos II e III em I:  

A = (wr)² / r ;

A = (2πf)²r ;  

10 = (2πf)² . 90 ;  

F = 1/6π Hz ;  

Por isso, nós teremos a frequência em Hertz, ou seja, Rotações por minuto. Finalizando agora, só transformar esse valor em rotações por minuto.

1s ---- 1/6π

60 ---- x  

x = 10/π

espero ter ajudado nos estudos, bom dia :)

Respondido por aghatarmller
10

Resposta:

x = 10/π

Explicação:

Perguntas interessantes