Matemática, perguntado por laianesilva0612, 9 meses atrás

Em uma urna foram colocadas 20 bolinhas, numeradas de 1 a 20. Quantas maneiras diferentes existem para se pegar 3 bolinhas dessa urna sem devolvê-las?


laianesilva0612: me ajudem!!!

Soluções para a tarefa

Respondido por ricepigs
2

Resposta:

Existem 6840 maneiras diferentes.

Explicação passo-a-passo:

Olá, primeiro vamos compreender que existem 20 bolinhas e desejamos saber quantas maneiras diferentes podemos organiza-las em grupos de 3 (que vamos retirar da caixinha).

A primeira bolinha que retiramos é única em 20 opções, certo?

Porém quando formos tirar uma depois, não teremos mais 20 opções de bolinhas, já que uma foi retirada, ou seja, existem só 19 opções de bolinhas.

Logo após tiraremos a última bolinha, ela será uma opção entre 18 bolinhas.

Com essa informação, podemos deduzir que

20, é o número de opções para pegarmos 1 bolinha.

20 x 19 = 380, que será o número de opções para pegarmos 2 bolinhas.

20 x 19 x 18 = 6840, que é o número de opções para pegar 3 bolinhas.

Essa lógica se segue para quantas bolinhas você quiser pegar, por exemplo, se você quisesse 4 bolinhas, seria:

20 x 19 x 18 x 17 = 116.280

Resumindo, existem 6840 maneiras diferentes.


laianesilva0612: obg
Respondido por lasouza627
1

Podemos resolver facilmente essa tarefa usando análise combinatória.

  • O que é análise combinatória?

É o nome dado ao conjunto de técnicas usadas para se agrupar, em subconjuntos diferentes, um número finito de elementos pertencentes a um conjunto e, através desses subconjuntos, realizar a análise das possibilidades e combinações.

Algumas dessas técnicas são:

  • Fatorial
  • Arranjos simples
  • Combinação
  • Permutação simples
  • Permutação com elementos repetidos

  • O que é um fatorial?

Chama-se de fatorial de um número natural n, maior que 1, o produto desse número por todos aqueles menores que ele e maiores que 0, ou seja,

n!=n \times (n-1) \times (n-2) \times (n-3) \times ~...~\times 3 \times 2 \times 1

  • O que é um arranjo simples?

Um arranjo simples é um agrupamento onde os subconjuntos formados se diferenciam uns dos outros pela ordem de seus elementos dentro do subconjunto.

  • Como calcular um arranjo simples de elementos?

A fórmula para se encontrar as diferentes combinações de um conjunto de elementos é dada por

A_p^n=\dfrac{n!}{(n-p)!}

onde,

  • n é a quantidade de elementos do conjunto
  • p é um número menor ou igual a n, que representa o número de elementos em cada combinação

  • Resolução do problema

Como a ordem das bolinhas dentro dos agrupamentos importa (1,2,3 é diferente de 1,3,2), podemos usar arranjo simples de 20 bolinhas tomadas 3 a 3

A_3^{20}=\dfrac{20!}{(20-3)!}\\\\\\A_3^{20}=\dfrac{20!}{17!}\\\\\\A_3^{20}=\dfrac{20 \times 19 \times 18 \times 17!}{17!}\\\\\\A_3^{20}=20 \times 19 \times 18\\\\\\\boxed{\boxed{A_3^{20}=6.840}}

  • Conclusão

Portanto, com 20 bolinhas, temos 6.840 maneiras diferentes para se pegar 3 delas da urna sem devolvê-las.

  • Para saber mais

https://brainly.com.br/tarefa/24259275

Anexos:
Perguntas interessantes