Matemática, perguntado por jeir, 7 meses atrás

Em uma progressão aritmética em que o
primeiro termo é 23 e a razão é – 6, a posição
ocupada pelo elemento 013 é:​

Soluções para a tarefa

Respondido por CyberKirito
16

Caso esteja pelo app, e tenha problemas para visualizar esta resposta, experimente abrir pelo navegador https://brainly.com.br/tarefa/40440424

                                                                   

\large\boxed{\begin{array}{l}\sf a_1=23\\\sf r=-6\\\sf a_{13}=a_1+12r\\\sf a_{13}=23+12\cdot(-6)\\\sf a_{13}=23-72\\\sf a_{13}=-49\end{array}}


ryanmoreirahoinasque: ^^^$^€
Respondido por RalphaOrion
19

Resposta:

- 49

Explicação passo-a-passo:

Fórmula da progressão aritmética

 \sf{ a_{n} = a_{1} + (n - 1) \times r}

__________________

termo geral 》 13

primeiro termo 》 23

razão 》 - 6

__________________

 \sf{ a_{n} = a_{1} + (n - 1) \times r}

 \sf{ a_{13} = 23+ (13 - 1) \times  - 6}

\sf{ a_{13} = 23+ 12 \times  - 6}

  • primeiro se resolve a multiplicação depois a soma

\sf{ a_{13} = 23 - 72}

  \red{\boxed{a_{13} =  - 49}}

__________________

Veja também em :

  • https://brainly.com.br/tarefa/39744625?
Anexos:

jeir: obgd
RalphaOrion: Por nada
jumenta77: Só de imaginar que eu vou estudar isso eu vou morrer
Perguntas interessantes