Em uma indústria há duas máquinas que funcionam em velocidades constantes, mas distintas entre si. Funcionando ininterruptamente, juntas, produzem x peças iguais em 2h e 40 min. Uma delas sozinha produziria x peças iguais em 4 h ininterruptas. A outra produziria as x peças funcionando ininterruptamente em: a)8h e 15 min b)8h c)7h e meia d)7h e 15 min
(EXPLICADO)
Soluções para a tarefa
Respondido por
1
2h 40mim = 2 + 40/60 = 2 + 2/3 = (6 + 2)/3 = 8/3 h
Em uma hora, uma faz 1/4 do serviço e a outra 1/x do serviço
As duas juntas, fazem 1/(8/3) do serviço
Logo, temos:
Resp. Letra A
Em uma hora, uma faz 1/4 do serviço e a outra 1/x do serviço
As duas juntas, fazem 1/(8/3) do serviço
Logo, temos:
Resp. Letra A
Respondido por
3
alternativa b) 8h
sejam as máquinas A e B
suponhamos que x peças seja igual a 1000 peças.
Vamos converter os tempos em minutos:
A+B produzem 1000 peças em 2h 40m = 1000 peças em 160 minutos
A+B produzem 1000/160= 6,25 peças por minuto
A pruduz 1000 em 240 minutos
A produz 1000/240= 4,166666 peças por minuto
B produziria 6,25-4,166666= 2,0833 peças por minuto
Para produzir X peças, B trabalharia 1000/2,0833= 480m = 480/60= 8h
Resposta: 8h
sejam as máquinas A e B
suponhamos que x peças seja igual a 1000 peças.
Vamos converter os tempos em minutos:
A+B produzem 1000 peças em 2h 40m = 1000 peças em 160 minutos
A+B produzem 1000/160= 6,25 peças por minuto
A pruduz 1000 em 240 minutos
A produz 1000/240= 4,166666 peças por minuto
B produziria 6,25-4,166666= 2,0833 peças por minuto
Para produzir X peças, B trabalharia 1000/2,0833= 480m = 480/60= 8h
Resposta: 8h
Perguntas interessantes