Em um trapézio retângulo sabe-se que a base média é 10 cm, o perímetro é 56 cm e o lado oblíquo é 20 cm. Então, a mediana de Euller desse trapézio é:
Soluções para a tarefa
Respondido por
1
Resposta:
m = 6 cm
Explicação passo-a-passo:
Seja:
B: base maior
b: base menor
h: altura
P: perímetro
Sendo a base média 10 cm, então:
10 = (B + b) ÷ 2
B + b = 20
P = B + b + 20 + h
56 = 20 + 20 + h
h = 16
No triângulo retângulo da figura:
20² = h² + (B − b)²
20² = 16² + (B − b)²
(B − b)² = 20² − 16²
(B − b)² = 400 − 256
(B − b)² = 144
B − b = 12
Calculo da mediana de Euller:
m = (B − b) ÷ 2
m = 12 ÷ 2
m = 6 cm
Anexos:
Perguntas interessantes
Geografia,
6 meses atrás
Sociologia,
6 meses atrás
Ed. Técnica,
6 meses atrás
História,
9 meses atrás
Geografia,
1 ano atrás
Química,
1 ano atrás