Administração, perguntado por fluvioantonio, 11 meses atrás

Em um pronto-socorro, o número de atendimentos de emergência segue uma distribuição de Poisson com média de 60 atendimentos por hora. Calcule:
a) A probabilidade de o pronto-socorro não efetuar nenhum atendimento em um intervalo de 5 minutos.

Soluções para a tarefa

Respondido por lucelialuisa
4

A probabilidade de que não ocorre nenhum atendimento em 5 minutos é de 0,6738%.

A Distribuição de Poisson é dada por:

P (x = k) = \frac{e^{- \lambda}. \lambda^{k}}{k!}

onde k é a probabilidade a ser investigada e λ é a probabilidade real.

Nesse pronto-socorro são atendidos em média 60 pessoas por hora, ou seja, 1 pessoa é atendida por minuto. Logo, em 5 minutos, temos o atendimento de 5 pessoas (λ).

Desejamos saber qual a probabilidade de que nenhum atendimento (k) seja efetuado no mesmo tempo. Logo, aplicando os valores na equação, teremos:

P (x = 0) = \frac{e^{-5}.5^{0}}{0!}

P (x = 0) = \frac{0,006738.1}{1}

P (x = 0) = 0,006738 = 0,6738%

Espero ter ajudado!

Perguntas interessantes