Matemática, perguntado por pedromedinap360, 11 meses atrás

Em um polígono regular o número de lados é um terço do número de diagonais.Determine o valor de cada ângulo interno desse polígono.Por favor me ajudem estou com muita dúvida.​

Soluções para a tarefa

Respondido por lasouza627
4
  • Quantas diagonais tem um polígono regular?

Chamando de n o número de lados do polígono regular, seu número de diagonais (d) por der obtido através da seguinte equação:

d=\dfrac{n(n-3)}{2}

  • Qual é a soma dos ângulos internos de um polígono?

Para um polígono de n lados, a soma (S) de seus ângulos internos é dada por:

S=(n-2)~.~180^{\circ}

  • Resolvendo o problema

Do enunciado, temos que número de lados é um terço do número de diagonais. Logo,

n=\dfrac{d}{3}\\\\d=3~.~n

Substituindo esse valor na equação das diagonais, temos

d=\dfrac{n(n-3)}{2}\\\\3n=\dfrac{n(n-3)}{2}\\\\2~.~3n=n(n-3)\\\\6n=n^2-3n\\\\n^2=6n+3n\\\\n^2=9n\\\\\dfrac{n^2}{n}=9\\\\n=9

Substituindo esse valor na equação da soma dos ângulos internos, temos

S=(n-2)~.~180^{\circ}\\\\S=(9-2)~.~180^{\circ}\\\\S=7~.~180^{\circ}\\\\S=1.260^{\circ}

Para saber o valor de cada ângulo interno (a) desse polígono, basta dividir S por n

a=\dfrac{S}{n}\\\\a=\dfrac{1.260}{9}\\\\\boxed{\boxed{a=140^{\circ}}}

  • Para saber mais

https://brainly.com.br/tarefa/6473485

Anexos:

pedromedinap360: Muito obrigado!Você me ajudou bastante!
Perguntas interessantes