Em um laboratório, há 7 bancadas organizadas uma ao lado da outra na mesma fileira. Em cada uma dessas bancadas, será colocado apenas um dos seguintes equipamentos: o microscópio, a balança, a centrífuga, a estufa, o dinamômetro, a bomba de vácuo e o balão de destilação. De quantas maneiras diferentes é possível distribuir esses aparelhos nas bancadas considerando que a estufa, o dinamômetro e a balança sempre fiquem em bancadas vizinhas? Gabarito 144
Soluções para a tarefa
Olá!
Essa é uma questão que pode ser utilizado os conhecimentos de análise combinatória.
Microscópio - M
Balança - B
Centrífuga - C
Estufa - E
Dinanômetro - D
Bomba de Vácuo - V
Balão de Destilação - A
E, D, B - esses precisam ficar sempre juntos.
Eles vão permutar entre si: 3! = 3 . 2 = 6.
Agora os outros permutarão entre si, mas teremos que considerar aqueles 3 como fazendo parte da permutação, por isso será a permutação de 5!.
5 . 4 . 3 . 2 . 1 = 120
120 . 6 = 720
720 maneiras.
Espero ter ajudado!
Resposta: 144
Explicação passo-a-passo:
Considerando que são 7 bancadas e 3 precisam ficar sempre juntas, então temos:
E D B _ _ _ _ P4!= 24 bancadas que sobraram
E D B P3! = 6 de E D B que precisam ficar prximos
Logo: 24 x 6 = 144