Matemática, perguntado por joicedeazeredo, 4 meses atrás

Em um grupo de técnicos, todos optaram por pelo menos um dos três programas analisados e os dados foram registrados na tabela a seguir:

De acordo com os dados da tabela anterior, e sabendo que 33 técnicos optaram exatamente pelos três programas, pode-se afirmar que o número de técnicos que optaram por exatamente dois desses três programas foi:

a. 24
b. 72
c. 11
d. 44
e. 36

Anexos:

Soluções para a tarefa

Respondido por esthernklein11
1

Resposta:

Explicação passo a passo:

respondi a mesma questão na prova.

É 72

De acordo com os dados da tabela anterior, e sabendo que 33 técnicos optaram exatamente pelos três programas, pode-se afirmar que o número de técnicos que optaram por exatamente dois desses três programas foi:

a.44

b.24

c.36

d.72

e.11


amandamachadojanuari: poderia explicar pq deu 72?
Respondido por jalves26
2

O número de técnicos que optaram por exatamente dois programas foi 72. Alternativa B.

Diagrama de Venn

O diagrama de Venn, que mostra as intersecções entre os conjuntos, ajuda na resolução da atividade.

X% ficará na intersecção dos três conjuntos.

A e B => 24%. Logo, apenas A e B => 24 - x.

A e C => 16%. Logo, apenas A e C => 16 - x.

B e C => 17%. Logo, apenas B e C => 17 - x.

Programa A => 53%. Logo, apenas A:

53 - (16 - x + 24 - x + x) = 53 - (40 - x) = 13 + x.

Programa B => 48%. Logo, apenas B:

48 - (17 - x + 24 - x + x) = 48 - (41 - x) = 7 + x.

Programa C => 45%. Logo, apenas C:

45 - (16 - x + 17 - x + x) = 45 - (33 - x) = 12 + x.

Como o total é de 100% (todos optaram por pelo menos um dos três programas analisados), temos:

(13 + x) + (7 + x) + (12 + x) + (24 - x) + (16 - x) + (17 - x) + x = 100

13 + 7 + 12 + 24 + 16 + 17 + x + x + x - x - x - x + x = 100

89 + x = 100

x = 100 - 89

x = 11

Então, 11% do total de pessoas corresponde a 33 técnicos. Logo:

11% de T = 33

11 . T = 33

100

11.T = 3300

T = 3300

         11

T = 300

O total é de 300 pessoas.

O número de técnicos que optaram por exatamente dois desses três programas corresponde à soma:

(24 - x) + (16 - x) + (17 - x) =

24 + 16 + 17 - x - x - x =

57 - 3x =

57 - 3.11 =

57 - 33 = 24% do total de pessoas.

24% de 300 =

24 . 300 = 24 . 3 = 72 pessoas

100

Mais uma tarefa envolvendo diagrama de Venn em:

brainly.com.br/tarefa/13789880

#SPJ1

Anexos:
Perguntas interessantes
Matemática, 4 meses atrás