Em quantos anagramas da palavra QUEIJO as vogais aparecem juntas?
Obs: é uma permutação
Soluções para a tarefa
Respondido por
57
=> Temos a palavra QUEIJO
...pretendemos determinar o número de anagramas em que as vogais NÃO APAREÇAM juntas
assim vamos começar por calcular os anagramas em que as vogais estejam juntas e depois subtrair esse total ...ao Total de anagramas da palavra
Considerando as vogais como uma única letra teremos
QJ(VVVV)
as permutações possíveis são:
As vogais entre si = 4!
A permutação das "3 letras" = 3!
total com as vogais juntas = 4! . 3! = 120
Total de anagramas da palavra queijo = 6!
e pronto ...o total de anagramas em que as vogais NÃO ESTÃO JUNTAS será dado por:
N = 6! - 3!4!
N = 720 - 144
N = 576 <-- anagramas
Espero ter ajudado
...pretendemos determinar o número de anagramas em que as vogais NÃO APAREÇAM juntas
assim vamos começar por calcular os anagramas em que as vogais estejam juntas e depois subtrair esse total ...ao Total de anagramas da palavra
Considerando as vogais como uma única letra teremos
QJ(VVVV)
as permutações possíveis são:
As vogais entre si = 4!
A permutação das "3 letras" = 3!
total com as vogais juntas = 4! . 3! = 120
Total de anagramas da palavra queijo = 6!
e pronto ...o total de anagramas em que as vogais NÃO ESTÃO JUNTAS será dado por:
N = 6! - 3!4!
N = 720 - 144
N = 576 <-- anagramas
Espero ter ajudado
Perguntas interessantes
Matemática,
9 meses atrás
Matemática,
9 meses atrás
Português,
1 ano atrás
História,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás