Em matemática, um ponto crítico, também chamado de ponto estacionário, é um ponto no domínio de uma função onde a primeira derivada é nula. Os pontos críticos serão sempre pontos de máximos ou mínimos relativos ou pontos de inflexão, podendo-se descobrir em que categoria o ponto cai analisando a sua segunda derivada (a curvatura) da função. Em matemática, a análise de máximos e mínimos (pontos críticos) possui diversas aplicações. Uma delas é na área fabril. Sendo assim, imagine que o custo de fabricação de x unidades de um produto é dado por:
C(x) = 3x³ - 324x +192.
Quantas unidades deverão ser fabricadas para que o custo médio seja mínimo?
Soluções para a tarefa
Resposta:
Em matemática, um ponto crítico, também chamado de ponto estacionário, é um ponto no domínio de uma função onde a primeira derivada é nula. Os pontos críticos serão sempre pontos de máximos ou mínimos relativos ou pontos de inflexão, podendo-se descobrir em que categoria o ponto cai analisando a sua segunda derivada (a curvatura) da função. Em matemática, a análise de máximos e mínimos (pontos críticos) possui diversas aplicações. Uma delas é na área fabril. Sendo assim, imagine que o custo de fabricação de x unidades de um produto é dado por:
C(x) = 3x³ - 324x +192.
Quantas unidades deverão ser fabricadas para que o custo médio seja mínimo?
Explicação passo-a-passo:
Em matemática, um ponto crítico, também chamado de ponto estacionário, é um ponto no domínio de uma função onde a primeira derivada é nula. Os pontos críticos serão sempre pontos de máximos ou mínimos relativos ou pontos de inflexão, podendo-se descobrir em que categoria o ponto cai analisando a sua segunda derivada (a curvatura) da função. Em matemática, a análise de máximos e mínimos (pontos críticos) possui diversas aplicações. Uma delas é na área fabril. Sendo assim, imagine que o custo de fabricação de x unidades de um produto é dado por:
C(x) = 3x³ - 324x +192.
Quantas unidades deverão ser fabricadas para que o custo médio seja mínimo?