Em janeiro depositei 100,00 no banco, em fevereiro 200,00 em março 300,00 e assim sucessivamente sem falhas em nenhum mês. Quanto terei depositado após quatro anos se mantiver esse mesmo procedimento? resposta 117.600,00
Soluções para a tarefa
Resposta:
R$ 117.600,00
Explicação passo-a-passo:
1º mês: R$ 100,00
2º mês: R$ 200,00
3º mês: R$ 300,00
Observando a relação do 1º mês com o 3º mês, temos:
100 + (3 - 1) × 100 = 300
Ou seja, o valor do depósito do 3º mês será o do 1º mês mais o número de meses que se passaram desde então (3 - 1)
Em incógnitas: 100 + (x - 1) × 100 = y
Considerando x o número do depósito e y o valor total
1 ano tem 12 meses
Em 4 anos teremos 48 meses
Aplicando a fórmula, teremos:
100 + (48 - 1) × 100 = y
100 + 4700 = y
4800 = y
O valor do último depósito será igual a R$ 4.800,00
Considerando que de um mês para outro o valor do depósito aumenta R$100,00 faremos por Gaus:
(1 + 2 + 3 + 4 + 5 + 6 + .... + 48) × 100 = z
49 × 24 × 100 = z
117.600 = z
A soma dos depósitos feitos durante 4 anos será igual a R$ 117.600,00