em cada um dos itens abaixo, use o discriminante para decidir o número de vezes em que o gráfico da função corta o eixo x.
A) f(x)=x²+4
B) f(x)=x²+4x+4
C) f(x)=-x²+4x+4
Soluções para a tarefa
Respondido por
98
Descobriremos isso a partir do 'discriminante Delta' (faltou ali em cima, mas é isso).
Vamos lá!
![Para~~\Delta \ \textgreater \ 0 ~ \overrightarrow{~~~~~~} ~Teremos ~~duas ~~raizes ~~distintas, ~~ou~~seja~~o\\gra\´fico~~toca~~o~~eixo~~x~~em~~dois~~pontos~~diferentes. Para~~\Delta \ \textgreater \ 0 ~ \overrightarrow{~~~~~~} ~Teremos ~~duas ~~raizes ~~distintas, ~~ou~~seja~~o\\gra\´fico~~toca~~o~~eixo~~x~~em~~dois~~pontos~~diferentes.](https://tex.z-dn.net/?f=Para%7E%7E%5CDelta+%5C+%5Ctextgreater+%5C++0+%7E+%5Coverrightarrow%7B%7E%7E%7E%7E%7E%7E%7D+%7ETeremos+%7E%7Eduas+%7E%7Eraizes+%7E%7Edistintas%2C+%7E%7Eou%7E%7Eseja%7E%7Eo%5C%5Cgra%5C%C2%B4fico%7E%7Etoca%7E%7Eo%7E%7Eeixo%7E%7Ex%7E%7Eem%7E%7Edois%7E%7Epontos%7E%7Ediferentes.)
![Para~~\Delta = 0 ~ \overrightarrow{~~~~~~} ~Teremos~~duas~~raizes~~iguais,~~ou~~seja, ~~o\\ gra\´fico~~toca~~o~~eixo ~~x~~em~~apenas~~um~~u\´nico ~~ponto. Para~~\Delta = 0 ~ \overrightarrow{~~~~~~} ~Teremos~~duas~~raizes~~iguais,~~ou~~seja, ~~o\\ gra\´fico~~toca~~o~~eixo ~~x~~em~~apenas~~um~~u\´nico ~~ponto.](https://tex.z-dn.net/?f=Para%7E%7E%5CDelta+%3D+0+%7E+%5Coverrightarrow%7B%7E%7E%7E%7E%7E%7E%7D+%7ETeremos%7E%7Eduas%7E%7Eraizes%7E%7Eiguais%2C%7E%7Eou%7E%7Eseja%2C+%7E%7Eo%5C%5C+gra%5C%C2%B4fico%7E%7Etoca%7E%7Eo%7E%7Eeixo+%7E%7Ex%7E%7Eem%7E%7Eapenas%7E%7Eum%7E%7Eu%5C%C2%B4nico+%7E%7Eponto.)
![Para~~\Delta \ \textless \ 0 ~ \overrightarrow{~~~~~~} ~N\~ao~~teremos~~raizes~~no~~conjunto~~dos~~reais.\\ Ou~~seja,~~a ~~para\´bola~~n\~ao~~toca~~e~~nem~~corta~~o~~eixo~~x. Para~~\Delta \ \textless \ 0 ~ \overrightarrow{~~~~~~} ~N\~ao~~teremos~~raizes~~no~~conjunto~~dos~~reais.\\ Ou~~seja,~~a ~~para\´bola~~n\~ao~~toca~~e~~nem~~corta~~o~~eixo~~x.](https://tex.z-dn.net/?f=Para%7E%7E%5CDelta+%5C+%5Ctextless+%5C++0+%7E+%5Coverrightarrow%7B%7E%7E%7E%7E%7E%7E%7D+%7EN%5C%7Eao%7E%7Eteremos%7E%7Eraizes%7E%7Eno%7E%7Econjunto%7E%7Edos%7E%7Ereais.%5C%5C+Ou%7E%7Eseja%2C%7E%7Ea+%7E%7Epara%5C%C2%B4bola%7E%7En%5C%7Eao%7E%7Etoca%7E%7Ee%7E%7Enem%7E%7Ecorta%7E%7Eo%7E%7Eeixo%7E%7Ex.)
Calcularemos Delta por:
![\Delta=b^2-4ac \Delta=b^2-4ac](https://tex.z-dn.net/?f=%5CDelta%3Db%5E2-4ac)
Seguindo isso, nesses exemplos teremos:
![A)~~f(x)=x^2+4\to~~~~x^2+4=0\\\\ a=1~;~b=0~;~c=4\\\\ \Delta=0^2-4.1.4\to~~ \Delta=0-16\to~~ \boxed{\Delta=-16}\\\\\\ \Delta\ \textless \ 0, ~~Ent\~ao~~n\~ao~~toca~~nem~~corta ~~o~~eixo~~x~~nenhuma~~vez. A)~~f(x)=x^2+4\to~~~~x^2+4=0\\\\ a=1~;~b=0~;~c=4\\\\ \Delta=0^2-4.1.4\to~~ \Delta=0-16\to~~ \boxed{\Delta=-16}\\\\\\ \Delta\ \textless \ 0, ~~Ent\~ao~~n\~ao~~toca~~nem~~corta ~~o~~eixo~~x~~nenhuma~~vez.](https://tex.z-dn.net/?f=A%29%7E%7Ef%28x%29%3Dx%5E2%2B4%5Cto%7E%7E%7E%7Ex%5E2%2B4%3D0%5C%5C%5C%5C+a%3D1%7E%3B%7Eb%3D0%7E%3B%7Ec%3D4%5C%5C%5C%5C+%5CDelta%3D0%5E2-4.1.4%5Cto%7E%7E+%5CDelta%3D0-16%5Cto%7E%7E+%5Cboxed%7B%5CDelta%3D-16%7D%5C%5C%5C%5C%5C%5C+%5CDelta%5C+%5Ctextless+%5C+0%2C+%7E%7EEnt%5C%7Eao%7E%7En%5C%7Eao%7E%7Etoca%7E%7Enem%7E%7Ecorta+%7E%7Eo%7E%7Eeixo%7E%7Ex%7E%7Enenhuma%7E%7Evez.)
![B)~~f(x)=x^2+4x+4\to~~~~x^2+4x+4=0\\\\ a=1~;~b=4~;~c=4\\\\ \Delta= 4^2-4.1.4\to~~ \Delta=16-16\to~~ \boxed{\Delta=0} \\\\\\ \Delta=0, ~~Ent\~ao~~a ~~para\´bola~~toca ~~o~~eixo~~x~~em~~um ~~u\´nico~~ponto. B)~~f(x)=x^2+4x+4\to~~~~x^2+4x+4=0\\\\ a=1~;~b=4~;~c=4\\\\ \Delta= 4^2-4.1.4\to~~ \Delta=16-16\to~~ \boxed{\Delta=0} \\\\\\ \Delta=0, ~~Ent\~ao~~a ~~para\´bola~~toca ~~o~~eixo~~x~~em~~um ~~u\´nico~~ponto.](https://tex.z-dn.net/?f=B%29%7E%7Ef%28x%29%3Dx%5E2%2B4x%2B4%5Cto%7E%7E%7E%7Ex%5E2%2B4x%2B4%3D0%5C%5C%5C%5C+a%3D1%7E%3B%7Eb%3D4%7E%3B%7Ec%3D4%5C%5C%5C%5C+%5CDelta%3D+4%5E2-4.1.4%5Cto%7E%7E+%5CDelta%3D16-16%5Cto%7E%7E+%5Cboxed%7B%5CDelta%3D0%7D++%5C%5C%5C%5C%5C%5C+%5CDelta%3D0%2C+%7E%7EEnt%5C%7Eao%7E%7Ea+%7E%7Epara%5C%C2%B4bola%7E%7Etoca+%7E%7Eo%7E%7Eeixo%7E%7Ex%7E%7Eem%7E%7Eum+%7E%7Eu%5C%C2%B4nico%7E%7Eponto.+)
![C)~~f(x)=-x^2+4x+4\to~~~~ -x^2+4x+4=0\\\\ a=-1~;~b=4~;~c=4\\\\ \Delta=4^2-4.(-1).4\to~~ \Delta = 16+16\to~~ \boxed{\Delta=32}\\\\\\ \Delta\ \textgreater \ 0, ~Ent\~ao~a~para\´bola~corta~o~eixo~em~dois~pontos~diferentes. C)~~f(x)=-x^2+4x+4\to~~~~ -x^2+4x+4=0\\\\ a=-1~;~b=4~;~c=4\\\\ \Delta=4^2-4.(-1).4\to~~ \Delta = 16+16\to~~ \boxed{\Delta=32}\\\\\\ \Delta\ \textgreater \ 0, ~Ent\~ao~a~para\´bola~corta~o~eixo~em~dois~pontos~diferentes.](https://tex.z-dn.net/?f=C%29%7E%7Ef%28x%29%3D-x%5E2%2B4x%2B4%5Cto%7E%7E%7E%7E+-x%5E2%2B4x%2B4%3D0%5C%5C%5C%5C+a%3D-1%7E%3B%7Eb%3D4%7E%3B%7Ec%3D4%5C%5C%5C%5C+%5CDelta%3D4%5E2-4.%28-1%29.4%5Cto%7E%7E+%5CDelta+%3D+16%2B16%5Cto%7E%7E+%5Cboxed%7B%5CDelta%3D32%7D%5C%5C%5C%5C%5C%5C+%5CDelta%5C+%5Ctextgreater+%5C+0%2C+%7EEnt%5C%7Eao%7Ea%7Epara%5C%C2%B4bola%7Ecorta%7Eo%7Eeixo%7Eem%7Edois%7Epontos%7Ediferentes.)
Vamos lá!
Calcularemos Delta por:
Seguindo isso, nesses exemplos teremos:
ebert4:
como seria o grafico
Perguntas interessantes
Matemática,
1 ano atrás
Matemática,
1 ano atrás
História,
1 ano atrás
História,
1 ano atrás
Artes,
1 ano atrás
História,
1 ano atrás