Matemática, perguntado por erivaniopereira9, 10 meses atrás

É urgente pfvr!!
Dada as matrizes A = (aij) 2x3 com aij = mmc(i;j) e B = (bij) 2x3 com bij = mdc(i;j), obtenha a matriz resultante de A +B.


Soluções para a tarefa

Respondido por Usuário anônimo
4

Explicação passo-a-passo:

A=\left(\begin{array}{ccc} a_{11}&a_{12}&a_{13} \\ a_{21}&a_{22}&a_{23} \end{array}\right)

a_{11}=\text{mmc}(1,1)~\longrightarrow~a_{11}=1

a_{12}=\text{mmc}(1,2)~\longrightarrow~a_{12}=2

a_{13}=\text{mmc}(1,3)~\longrightarrow~a_{13}=3

a_{21}=\text{mmc}(2,1)~\longrightarrow~a_{21}=2

a_{22}=\text{mmc}(2,2)~\longrightarrow~a_{22}=2

a_{23}=\text{mmc}(2,3)~\longrightarrow~a_{23}=6

A=\left(\begin{array}{ccc} 1&2&3 \\ 2&2&6 \end{array}\right)

B=\left(\begin{array}{ccc} a_{11}&a_{12}&a_{13} \\ a_{21}&a_{22}&a_{23} \end{array}\right)

a_{11}=\text{mdc}(1,1)~\longrightarrow~a_{11}=1

a_{12}=\text{mdc}(1,2)~\longrightarrow~a_{12}=1

a_{13}=\text{mdc}(1,3)~\longrightarrow~a_{13}=1

a_{21}=\text{mdc}(2,1)~\longrightarrow~a_{21}=1

a_{22}=\text{mdc}(2,2)~\longrightarrow~a_{22}=2

a_{23}=\text{mdc}(2,3)~\longrightarrow~a_{23}=1

B=\left(\begin{array}{ccc} 1&1&1  \\ 1&2&1 \end{array}\right)

A+B=\left(\begin{array}{ccc} 1&2&3 \\ 2&2&6 \end{array}\right)+\left(\begin{array}{ccc} 1&1&1  \\ 1&2&1 \end{array}\right)

A+B=\left(\begin{array}{ccc} 1+1&2+1&3+1  \\ 2+1&2+2&6+1 \end{array}\right)

A+B=\left(\begin{array}{ccc} 2&3&4  \\ 3&4&7 \end{array}\right)

Perguntas interessantes