É dado o gráfico S x T para o movimento de um ciclista como é mostrado a seguir. Represente graficamente a velocidade escalar do ciclista no intervalo de 0 a 30s
Anexos:
![](https://pt-static.z-dn.net/files/dfd/055f276fdd4cdda773d1c9ba304afcd6.jpg)
Soluções para a tarefa
Respondido por
24
Sabemos que o gráfico nos informa a posição em função do tempo, tal que:
UTILIZANDO CÁLCULO DIFERENCIAL:
![\displaystyle s(t)=\begin{cases}s_1(t),~\text{para }0<t\leq 10\\300m,
\text{ para }10< t\leq20 \\s_2(t),~\text{para }20< t\leq 30\end{cases} \displaystyle s(t)=\begin{cases}s_1(t),~\text{para }0<t\leq 10\\300m,
\text{ para }10< t\leq20 \\s_2(t),~\text{para }20< t\leq 30\end{cases}](https://tex.z-dn.net/?f=%5Cdisplaystyle+s%28t%29%3D%5Cbegin%7Bcases%7Ds_1%28t%29%2C%7E%5Ctext%7Bpara+%7D0%26lt%3Bt%5Cleq+10%5C%5C300m%2C+%0A+%5Ctext%7B+para+%7D10%26lt%3B+t%5Cleq20+%5C%5Cs_2%28t%29%2C%7E%5Ctext%7Bpara+%7D20%26lt%3B+t%5Cleq+30%5Cend%7Bcases%7D)
devemos descobrir a lei das funções s1 e s2:
utilizando a equação da reta:
![\displaystyle i)~~~~ s-s_0=m(t-t_0)\implies \frac{\Delta s_1}{\Delta t}=m\\\\ii)~~~ \frac{300m-100m}{10s-0s}=\frac{200m}{10s}=20~m/s\\\\iii)~~\boxed{s_1(t)=20t ~m}\\\\\\i)~~~s-s_0=m'(t-t_0)\implies \frac{\Delta s_2}{\Delta t}=m'\\\\ii)~~\frac{100m-300m}{30s-20s}=-\frac{200m}{10s}=-20~m/s=m'\\\\iii)~\boxed{s_2(t)=-20t~m} \displaystyle i)~~~~ s-s_0=m(t-t_0)\implies \frac{\Delta s_1}{\Delta t}=m\\\\ii)~~~ \frac{300m-100m}{10s-0s}=\frac{200m}{10s}=20~m/s\\\\iii)~~\boxed{s_1(t)=20t ~m}\\\\\\i)~~~s-s_0=m'(t-t_0)\implies \frac{\Delta s_2}{\Delta t}=m'\\\\ii)~~\frac{100m-300m}{30s-20s}=-\frac{200m}{10s}=-20~m/s=m'\\\\iii)~\boxed{s_2(t)=-20t~m}](https://tex.z-dn.net/?f=%5Cdisplaystyle+i%29%7E%7E%7E%7E+s-s_0%3Dm%28t-t_0%29%5Cimplies+%5Cfrac%7B%5CDelta+s_1%7D%7B%5CDelta+t%7D%3Dm%5C%5C%5C%5Cii%29%7E%7E%7E+%5Cfrac%7B300m-100m%7D%7B10s-0s%7D%3D%5Cfrac%7B200m%7D%7B10s%7D%3D20%7Em%2Fs%5C%5C%5C%5Ciii%29%7E%7E%5Cboxed%7Bs_1%28t%29%3D20t+%7Em%7D%5C%5C%5C%5C%5C%5Ci%29%7E%7E%7Es-s_0%3Dm%27%28t-t_0%29%5Cimplies+%5Cfrac%7B%5CDelta+s_2%7D%7B%5CDelta+t%7D%3Dm%27%5C%5C%5C%5Cii%29%7E%7E%5Cfrac%7B100m-300m%7D%7B30s-20s%7D%3D-%5Cfrac%7B200m%7D%7B10s%7D%3D-20%7Em%2Fs%3Dm%27%5C%5C%5C%5Ciii%29%7E%5Cboxed%7Bs_2%28t%29%3D-20t%7Em%7D)
portanto:
![\displaystyle i)~~~~v(t)=\frac{ds}{dt}=\begin{cases}\frac{d}{dt}s_1(t),~\text{para }0<t\leq 10\\\frac{d}{dt}300m, \text{ para }10< t\leq20 \\\frac{d}{dt}s_2(t),~\text{para }20< t\leq 30\end{cases}\\\\ii)~~~\frac{ds_1}{dt}=\frac{d}{dt}(20t)=20~m/s\\\\iii)~~\frac{d}{dt}300m=0~m/s\\\\iv)~~\frac{ds_2}{dt}=\frac{d}{dt}(-20t)=-20~m/s\\\\ \displaystyle i)~~~~v(t)=\frac{ds}{dt}=\begin{cases}\frac{d}{dt}s_1(t),~\text{para }0<t\leq 10\\\frac{d}{dt}300m, \text{ para }10< t\leq20 \\\frac{d}{dt}s_2(t),~\text{para }20< t\leq 30\end{cases}\\\\ii)~~~\frac{ds_1}{dt}=\frac{d}{dt}(20t)=20~m/s\\\\iii)~~\frac{d}{dt}300m=0~m/s\\\\iv)~~\frac{ds_2}{dt}=\frac{d}{dt}(-20t)=-20~m/s\\\\](https://tex.z-dn.net/?f=%5Cdisplaystyle+i%29%7E%7E%7E%7Ev%28t%29%3D%5Cfrac%7Bds%7D%7Bdt%7D%3D%5Cbegin%7Bcases%7D%5Cfrac%7Bd%7D%7Bdt%7Ds_1%28t%29%2C%7E%5Ctext%7Bpara+%7D0%26lt%3Bt%5Cleq+10%5C%5C%5Cfrac%7Bd%7D%7Bdt%7D300m%2C+%5Ctext%7B+para+%7D10%26lt%3B+t%5Cleq20+%5C%5C%5Cfrac%7Bd%7D%7Bdt%7Ds_2%28t%29%2C%7E%5Ctext%7Bpara+%7D20%26lt%3B+t%5Cleq+30%5Cend%7Bcases%7D%5C%5C%5C%5Cii%29%7E%7E%7E%5Cfrac%7Bds_1%7D%7Bdt%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%2820t%29%3D20%7Em%2Fs%5C%5C%5C%5Ciii%29%7E%7E%5Cfrac%7Bd%7D%7Bdt%7D300m%3D0%7Em%2Fs%5C%5C%5C%5Civ%29%7E%7E%5Cfrac%7Bds_2%7D%7Bdt%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%28-20t%29%3D-20%7Em%2Fs%5C%5C%5C%5C)
ou seja:
![\boxed{v(t)=\begin{cases}20~m/s,~\text{para }0<t\leq 10\\0~m/s, \text{ para }10< t\leq20 \\-20~m/s,~\text{para }20< t\leq 30\end{cases}} \boxed{v(t)=\begin{cases}20~m/s,~\text{para }0<t\leq 10\\0~m/s, \text{ para }10< t\leq20 \\-20~m/s,~\text{para }20< t\leq 30\end{cases}}](https://tex.z-dn.net/?f=%5Cboxed%7Bv%28t%29%3D%5Cbegin%7Bcases%7D20%7Em%2Fs%2C%7E%5Ctext%7Bpara+%7D0%26lt%3Bt%5Cleq+10%5C%5C0%7Em%2Fs%2C+%5Ctext%7B+para+%7D10%26lt%3B+t%5Cleq20+%5C%5C-20%7Em%2Fs%2C%7E%5Ctext%7Bpara+%7D20%26lt%3B+t%5Cleq+30%5Cend%7Bcases%7D%7D)
Velocidade média:
Caso não compreenda a resolução comente abaixo que resolverei por velocidade média.
Se houver problemas para visualizara resposta, acesse-a pelo site através do link https://brainly.com.br/tarefa/10721246
Bons estudos!
UTILIZANDO CÁLCULO DIFERENCIAL:
devemos descobrir a lei das funções s1 e s2:
utilizando a equação da reta:
portanto:
ou seja:
Velocidade média:
Caso não compreenda a resolução comente abaixo que resolverei por velocidade média.
Se houver problemas para visualizara resposta, acesse-a pelo site através do link https://brainly.com.br/tarefa/10721246
Bons estudos!
Anexos:
![](https://pt-static.z-dn.net/files/d55/f9d51d04db2e3588e83e0e721bdf0fe7.png)
Perguntas interessantes
Geografia,
11 meses atrás
Matemática,
11 meses atrás
Pedagogia,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás