É dada uma função real tal que:
1. f(x).f(y) = f(x+y)
2.f(1) = 2
3.f(\/(2)) = 4
Calcule f(3+\/(2)).
Alguém poderia me ajudar a resolver,pois estava fazendo os exercícios e me deparo com este, que não consego chegar na resposta que é 32. Alguém poderia me explicar?
Soluções para a tarefa
Respondido por
4
f(x).f(y) = f( x +y)
f(√2) = 4
f(1) = 2
Se f(x+y) é igual a f(x).f(y), então:
f( 1+√2) = f(1).f(√2) = 2.4 = 8
Utilizando a mesma lógica:
f( 2 +√2) = f( 1 +( 1 +√2)) = f(1).f(1+√2) = 2.8 = 16
f( 3 +√2) = f( 1 +( 2+√2)) =f(1).f(2+√2) = 2.16 = 32
Dúvidas só perguntar!
igormsimes:
desculpe, mas ainda não consegui entender como q vc chegou nesse resultado, não estou entendendo o raciocínio lógico!
Perguntas interessantes
Português,
8 meses atrás
Sociologia,
8 meses atrás
Contabilidade,
1 ano atrás
Física,
1 ano atrás
Artes,
1 ano atrás