Matemática, perguntado por sadasdasdasdadad, 8 meses atrás

É dada a função horária do M.U.V de uma partícula, s = -24 + 16t - t 2 . Determine
(no S.I):

b) o instante em que essa partícula passa pela origem das posições ( s = 0 m

Soluções para a tarefa

Respondido por Makaveli1996
0

Oie, Td Bom?!

s =  - 24 + 16t - t {}^{2}

0 =  - 24 + 16t - t {}^{2}

 - 24 + 16t - t {}^{2}  = 0

 - t {}^{2}  + 16t - 24 = 0

t {}^{2}  - 16t + 24 = 0

• Coeficientes:

a = 1 \:  ,\: b =  - 16 \:  ,\: c = 24

• Fórmula resolutiva:

x =  \frac{ - b± \sqrt{b {}^{2}  - 4ac} }{2a}

t=  \frac{ - ( - 16)± \sqrt{( - 16) {}^{2} - 4 \: . \: 1 \: . \: 24 } }{2 \: . \: 1}

t =  \frac{16± \sqrt{256 - 96} }{2}

t =  \frac{16± \sqrt{160} }{2}

t =  \frac{16± \sqrt{4 {}^{2}  \: . \: 10} }{2}

t =  \frac{ 16±\sqrt{4 {}^{2} }  \sqrt{10} }{2}

t =  \frac{16±4 \sqrt{10} }{2}

⇒t =  \frac{16 + 4 \sqrt{10} }{2}  =  \frac{2(8 + 2 \sqrt{10} )}{2}  = 8 + 2 \sqrt{10 }  ≈14,32s

⇒t =  \frac{16 - 4 \sqrt{10} }{2}  =  \frac{2(8 - 2 \sqrt{10} )}{2}  = 8 - 2 \sqrt{10}  ≈ 1,67s

Att. Makaveli1996

Perguntas interessantes