Matemática, perguntado por patriarca, 1 ano atrás

É correto afirmar com base nas informações a seguir, que a equação polinomial que possui -3 como raiz dupla e 4 e 2 como raízes simples é:
A)x^4 - 19x^2 - 6x +36=0
B)x^4 - 6x^2 - 8x +24=0
C)x^4 - 12x^3 + 53x^2 - 102x + 72=0
D)x^4 - 19x^2 - 6x + 72=0
E)x^4 - 12x^3 - 8x - 96=0

Soluções para a tarefa

Respondido por GabrielMagal1
1
Um polinômio de raízes a , b , c ... pode ser faturado como : P(x) = (x-a)(x-b)(x-c)... Nesse caso temos um polinômio de raízes (-3 , -3 , 4 e 2) então sua forma fatorada é : (x+3)(x+3)(x-2)(x-4) = x⁴-19x²-6x+72 (opção D)
Respondido por Usuário anônimo
1
Opção (D)

P(x) = x^4 - 12x^3 + 53x^2 - 102x + 72 = 0 possui 3 como raiz dupla.

Fatorando-se P(x) temos:

P(x) = (x - a) (x -b) (x -b) (x - c) → suas raízes são: a, b, b, c

Cuidado com o sinal de menos!

P(x) = (x - 2) (x -3) (x - 3) (x - 4)

*-*-*-*-*-*-*-*-*-*-*-*
14/10/2016
Sepauto 
*-*-*-*-*-*-*-*-*-*-*-*
Perguntas interessantes