∫e^2x senx x resolução
Soluções para a tarefa
Se for ∫e^(2x) senx dx
Fazendo por partes
u =sen(x) ==> du =cos(x) dx
e^(2x) dx =dv ==> ∫e^(2x) dx = ∫ dv ==>(1/2)*e^(2x) = v
∫e^(2x) senx dx = sen(x) * (1/2)*e^(2x) - ∫ (1/2)*e^(2x) * cos(x) dx
∫e^(2x) senx dx = (1/2)* sen(x) * e^(2x) -(1/2) ∫ e^(2x) * cos(x) dx
___________________________________________________
*****∫ e^(2x) * cos(x) dx
Fazendo por partes
u =cos(x) ==>du =-sen(x) dx
e^(2x) dx =dv ==> ∫e^(2x) dx = ∫ dv ==>(1/2)*e^(2x) = v
∫ e^(2x) * cos(x) dx = cos(x)* (1/2)*e^(2x) - ∫ (1/2)*e^(2x) (-sen(x)) dx
∫ e^(2x) * cos(x) dx = (1/2)*cos(x)*e^(2x) + (1/2)∫ e^(2x) *sen(x) dx
___________________________________________________
∫e^(2x) senx dx = (1/2)* sen(x) * e^(2x) -(1/2) [(1/2)*cos(x)*e^(2x) + (1/2)∫ e^(2x) *sen(x) dx]
∫e^(2x) senx dx = (1/2)* sen(x) * e^(2x) - (1/4)*cos(x)*e^(2x) -(1/4)∫ e^(2x) *sen(x) dx
∫e^(2x) senx dx +(1/4)∫ e^(2x) *sen(x) dx = (1/2)* sen(x) * e^(2x) - (1/4)*cos(x)*e^(2x)
∫e^(2x) senx dx * [1+1/4] = (1/2)* sen(x) * e^(2x) - (1/4)*cos(x)*e^(2x)
∫e^(2x) senx dx * [5/4] = (1/2)* sen(x) * e^(2x) - (1/4)*cos(x)*e^(2x)
∫e^(2x) senx dx = (2/5)* sen(x) * e^(2x) - (1/5)*cos(x)*e^(2x)