Matemática, perguntado por jakellinegataaa, 1 ano atrás

Durante uma aula de matemática para o 6º ano do Colégio Militar do Rio de Janeiro, o professor Flávio escreveu no quadro a seguinte distribuição dos números naturais:

Mantendo-se a disposição acima pode-se afirmar que o número que inicia a 21° linha é um

(A) divisível por 7
(B) divisível por 3
(C) múltiplo de 4
(D) primo
(E) par

Anexos:

Soluções para a tarefa

Respondido por lorycleci
3
primo (d) ..........primo

ryanlira: cadê os cálculos meu filho??
Respondido por andre19santos
44

Se observarmos bem a distribuição que o professor escreveu, podemos notar um padrão: na primeira linha o último número é 1, na segunda linha o último número é 4, na terceiro é 9 e assim por diante, formando uma sequência de quadrados perfeitos, onde sua raiz é o número da linha (linha 1 = 1², linha 2 = 2², etc).


Note também que o primeiro elemento de cada linha é igual ao último elemento da linha anterior somado de um, então, temos que se n é o número da linha, o primeiro elemento de cada linha será dado por:

An = (n-1)² + 1


Assim, o primeiro número da 21ª linha é:

A21 = (21-1)² + 1

A21 =400 + 1

A21 = 401


Este é um número primo.

Resposta: D

Perguntas interessantes