Matemática, perguntado por alexalmeidasmp, 1 ano atrás

Duas retas paralelas são cortadas por uma transversal, de modo que a soma de dois dos ângulos agudos formados vale 72°. Então, qualquer dos ângulos obtusos formados mede?
a )142°
b)144°
c) 148°
d)150°
e)152°

Soluções para a tarefa

Respondido por welria
131
Basta aplicar Tales. 
A soma dos dois ângulos agudos e os dois ângulos obtusos formados é 360º. 
Descontamos 72º dos ângulos agudos, restando 360º - 72º = 288º 
Dividimos por 2 para a resposta: 288º / 2 = 144º
Respondido por silvageeh
59

Qualquer dos ângulos obtusos formados mede 144°.

Observe a imagem abaixo.

Antes, é importante lembrar que um ângulo é agudo quando é menor que 90° e é obtuso quando é maior que 90°.

Nela temos um angulo a que é obtuso e dois ângulos agudos, b e c.

Como temos duas retas paralelas cortadas por uma transversal, então os ângulos b e c são iguais, pois são correspondentes.

Além disso, temos que a soma de dois dos ângulos agudos vale 72°.

Sendo assim, podemos afirmar que:

b + b = 72

2b = 72

b = c = 36°.

O ângulo a + b forma um ângulo raso, ou seja, 180°.

Assim,

a + 36 = 180

a = 144°.

Anexos:
Perguntas interessantes