Duas empresas telefônicas, X e Y, prestam serviço à cidade de Vitória de Santo Antão. A
empresa X cobra, por mês, uma assinatura de R$35,00 mais R$0,50 por minuto utilizado. A
empresa Y cobra, por mês, uma assinatura de R$26,00 mais R$0,65 por minuto utilizado. Em
quantos minutos utilizados no mês os custos mensais das assinaturas se equivalem?
Soluções para a tarefa
Respondido por
1
Lei da função, para empresa x:
f(x) = 35 + 0,5x
Lei da função, para empresa y:
g(x) = 26 + 0,65x
Igualando as funções, para obter o instante em que os custos se equivalem:
f(x) = g(x)
35 + 0,5x = 26 + 0,65x
0,65x - 0,5x = 35 - 26
0,15x = 9
x = 9/0,15
x = 60
Portanto, os custos se equivalem quando o tempo excedido é 60 minutos
f(x) = 35 + 0,5x
Lei da função, para empresa y:
g(x) = 26 + 0,65x
Igualando as funções, para obter o instante em que os custos se equivalem:
f(x) = g(x)
35 + 0,5x = 26 + 0,65x
0,65x - 0,5x = 35 - 26
0,15x = 9
x = 9/0,15
x = 60
Portanto, os custos se equivalem quando o tempo excedido é 60 minutos
Shihiro13:
Muito obrigado e.e
Perguntas interessantes
História,
9 meses atrás
Artes,
9 meses atrás
Artes,
9 meses atrás
Biologia,
1 ano atrás
Português,
1 ano atrás
Administração,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás