Matemática, perguntado por Usuário anônimo, 11 meses atrás

Duas cordas, AB e CD, de uma circunferência cortam -se em um ponto P, de tal forma PA mede 9 cm, e PB me 4 cm. Sabendo que a corda CD mede 15 cm, qual a medida do maior segmento que o ponto P determina sobre essa corda?

Soluções para a tarefa

Respondido por juanbomfim22
1

PA x PB = PC x PD


Sabe-se que CD = 15, então se dividirmos em 2 segmentos (PC e PD), seus valores somados resultarão em 15

PC + PD = 15

PC = 15 - PD


4 x 9 = PC x PD

36 = (15-PD) x PD

36 = 15.PD - PD²


PD² - 15PD + 36 = 0


Soma das raízes = 15

Produto das raízes = 36


As raízes são 4 e 9


PD = 4 ou PD = 9


Logo:


PC = 15 - PD

PC = 15 - 9 ou PC = 15 - 4

PC= 4 ou 9


O maior segmento será 9 cm. (Ele pode ser PC ou PD, depende da orientação tomada)







Usuário anônimo: o resultado tem que dar 12 msm com esse calculo td n entendo como ele vai dar 12
juanbomfim22: Os dados estão corretos? Se for 9, 4 e 15 a resposta é 9.
juanbomfim22: Veja essa imagem https://www.google.com.br/url?sa=i&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwi097fAi8reAhXHhZAKHapaBJAQjRx6BAgBEAU&url=https%3A%2F%2Fmundoeducacao.bol.uol.com.br%2Fmatematica%2Frelacoes-metricas-na-circunferencia-relacao-entre-cordas.htm&psig=AOvVaw2LSquU4bCHerKBx5NcRA-6&ust=1541948376962712
Perguntas interessantes