Dois navios partem de um mesmo ponto, no mesmo instante, e viajam com velocidade constante em direções que formam um ángulo reto entre si. Depois de uma hora de viajem, a distancia entre os navios é 13 milhas. Se um deles é 7 milhas por hora mais rapido que o outro, delermine a velocidade de cada navio. (Teorema de Pitágoras)
Soluções para a tarefa
Respondido por
3
Os lados do triângulo retângulo formado, são:
Catetos : x e x+7
Hipotenusa: 13
Por Pitágoras, temos:
x² + x² + 14x + 49 = 169
2x²+14x-120=0 (÷2)
x²+7x-60=0
Por bhaskara, temos:
-7-17/2 = -12 (não convém)
ou
-7+17/2 = 5 (convém)
x = 5
Substituindo nos catetos, temos que a velocidade de uma navio é 5 milhas por hora e do outro é 12 milhas por hora.
Catetos : x e x+7
Hipotenusa: 13
Por Pitágoras, temos:
x² + x² + 14x + 49 = 169
2x²+14x-120=0 (÷2)
x²+7x-60=0
Por bhaskara, temos:
-7-17/2 = -12 (não convém)
ou
-7+17/2 = 5 (convém)
x = 5
Substituindo nos catetos, temos que a velocidade de uma navio é 5 milhas por hora e do outro é 12 milhas por hora.
Perguntas interessantes
Inglês,
10 meses atrás
Geografia,
10 meses atrás
Física,
10 meses atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
História,
1 ano atrás