Física, perguntado por Matheu2z, 8 meses atrás

Dois fios inextensiveis, paralelos, idênticos e de massas desprezíveis suspendem um bloco
regular de massa 10 kg formando um pêndulo vertical balístico, inicialmente em repouso. Um projetil
de massa igual a 100 g, com velocidade horizontal, penetra e se aloja no bloco e, devido ao cho-
que, o conjunto se eleva a uma altura de 80 cm, conforme figura abaixo. Considere que os fios
permaneçam sempre paralelos. A velocidade do projetil imediatamente antes de entrar no bloco é
Dados: despreze a resistência do ar e considere a aceleração da gravidade igual a 10 m/s2.
[A] 224 m/s.
[B] 320 m/s.
[C] 370 m/s.
[D] 380 m/s.
[E] 404 m/s.
h=80cm


mightyloki: Matheus, a questão possui algum desenho?

Soluções para a tarefa

Respondido por Usuário anônimo
15

Para calcular a velocidade do projétil, devemos compreender as transformações de energia e utilizar a conservação da quantidade de movimento, o que faremos a seguir.

  • Cálculo

Vamos começar pelo final do processo.

O projétil penetra no pêndulo e transmite energia cinética, que se transforma em energia potencial gravitacional, que provoca a elevação da altura do sistema em 80 centímetros (0,8 metros)

E_c=E_{p_{g}}

Desse modo:

\dfrac{m\cdot v^2}{2}=m\cdot g \cdot h

v^2=2\cdot g \cdot h

v=\sqrt{2\cdot g \cdot h}

Sendo V a velocidade do conjunto (projétil + pêndulo).

Substituindo os valores de altura e aceleração da gravidade:

v=\sqrt{2\cdot 10 \cdot 0,8}

v=\sqrt{16}

\boxed{v=4\: m/s}

Pela conservação da quantidade de movimento, temos que a quantidade de movimento inicial é igual à quantidade de movimento final (após o choque).

Q_{inicial}=Q_{final}

Dessa forma:

m_{projetil}\cdot v_{projetil}+m_{bloco}\cdot v_{bloco}=m_{total }\cdot v

Como o bloco (pêndulo) estava parado:

m_{projetil}\cdot v_{projetil}+m_{bloco}\cdot 0=m_{total }\cdot v

m_{projetil}\cdot v_{projetil}=m_{total }\cdot v

Adicionando os valores que conhecemos (nas unidades do SI):

\dfrac{100}{1000}\cdot v_{projetil}=(\dfrac{100}{1000}+10)\cdot 4

\dfrac{1}{10}\cdot v_{projetil}=(\dfrac{1}{10}+10)\cdot 4

\dfrac{ v_{projetil}}{10}=10,1\cdot 4

v_{projetil}=40,4\cdot 10

\boxed{\boxed{v_{projetil}=404 \: m/s}}

  • Resposta

A velocidade do projétil era de 404 metros por segundo.

(Alternativa E)

  • Perguntas semelhantes

Quantidade de movimento e energia cinética:

- https://brainly.com.br/tarefa/12942269

Relação entre energia cinética e outras grandezas:

- https://brainly.com.br/tarefa/7037021

(^ - ^)

Anexos:
Respondido por bryanavs
0

A velocidade do projétil imediatamente antes de entrar no bloco será de: 404 m /s - letra e).

O que é impulso e quantidade de movimento?

Impulso é caracterizado como uma grandeza que é o produto da força pelo tempo de aplicação da mesma enquanto que a quantidade de movimento é projetada como grandeza física vetorial direcionada a massa de um corpo e com isso, sua velocidade.

E as colisões elásticas são determinadas como forças conservativas, ou seja, nesse tipo de colisão, a energia cinética de cada corpo poderá sim variar, porém a constante "K" não irá.

Convertendo a energia cinética em energia potencial gravitacional, veremos que a altura desse sistema irá oscilar de 80cm para 0,8 metros, nos permitindo aplicar a seguinte equação:

  • m . v² / 2 = m . g . h

v² = 2 . g . h

v = √2 . g . h

Logo, a altura e aceleração da gravidade será:

v = √2 . 10 . 0,8

v = √16

v = 4 m/s.

Visualizando agora então a conservação da quantidade de movimento, teremos:

  • Qini = Qfin

Mproj . Vproj + Mblo = Mtot . v

PS: Importante ressaltar que o pêndulo estava parado.

Mproj . Vproj + Mblo . 0 = Mtot . V

Mproj . Vproj. = Mtotal . v

Finalizando então, teremos:

  • 100 / 1000 . Vproj = (100 / 1000 + 10) . 4

1 / 10 . Vproj = 1 / 10 + 10) . 4

Vproj / 10 = 10 , 1 . 4

Vproj = 40,4 . 10

Vproj = 404 m /s.

Para saber mais sobre Impulso e Quantidade de Movimento:

https://brainly.com.br/tarefa/12942269

Espero ter ajudado nos estudos e bebam água :))

#SPJ3

Anexos:
Perguntas interessantes