Matemática, perguntado por andressaolivei1, 1 ano atrás

Dois dados perfeitos são lançados. Considere os eventos
A: Sair número ímpar no 1° dado e
B: a soma dos resultados ser 7.

Determine:

a) p(A);

b) p(B);

c) p(A∩B);

d) p(B/A);

e) se A e B são independentes.

Soluções para a tarefa

Respondido por jonataslaet
62
a)
No primeiro dado temos três números ímpares (1, 3 e 5); sendo que ao todo são seis números (1, 2, 3, 4, 5 e 6). Então a probabilidade de sair número ímpar no primeiro dado pode ser calculada como:
P(A) = 3/6 = 0,5
P(A) = 50%

b)
As possibilidades das somas do primeiro e segundo dado serem 7 são: (1 e 6), (2 e 5), (3 e 4), (4 e 3), (5 e 2) e (6 e 1); ou seja, seis possibilidades. Sabemos que ao todo são 36 possibilidades (1 e 1) ... (6 e 6). Então, a probabilidade da soma dos dois dados ser 7 pode ser calculada como:
P(B) = 6/36 = 0,1666... = 0,166
P(B) = 16,6%

c)
P(A∩B) = P(A) * P(B)
Sabemos P(A) e sabemos P(B). Agora basta substituir na equação acima. E o cálculo fica assim:
P(
A∩B) = 0,5 * 0,166 = 0,083
P
(A∩B) = 8,3%

d)
P(B|A) significa a probabilidade de B acontecer dado que A ocorreu. Esse P(B|A) é calculado assim:
P(B|A) = [
P(B∩A)] / [P(A)];
Mas como já sabemos que P(B∩A) = 0,083 e P(A) = 0,5; basta substituir na fórmula, ficando assim:
P(B|A) = [0,083] / [0,5] = 0,166
P(B|A) = 16,6%

e)
Se A e B são independentes, então a ocorrência de um não altera na ocorrência do outro. Isso significa que P(A|B) = P(A) ou P(B|A) = P(B).


andressaolivei1: Me ajuda nessa? https://brainly.com.br/tarefa/12237227 Por favor, essa é última rs
Perguntas interessantes