Divisão de polinômios por monômio
Soluções para a tarefa
Resposta:
Monômio é um tipo de polinômio que possui apenas um termo, ou seja, que possui apenas coeficiente e parte literal. Por exemplo:
a2 → 1 é o coeficiente e a2 parte literal.
3x2y → 3 é o coeficiente e x2y parte literal.
-5xy6 → -5 é o coeficiente e xy6 parte literal.
• Divisão de monômio por monômio
Ao resolvermos uma divisão onde o dividendo e o divisor são monômios devemos seguir a regra: dividimos coeficiente com coeficiente e parte literal com parte literal. Exemplos:
6x3 : 3x = 6 . x3 = 2x2
3 x2

Observação: ao dividirmos as partes literais temos que estar atentos à propriedade que diz que base igual na divisão, repete a base e subtrai os expoentes.
Depois de relembrar essas definições veja alguns exemplos de como resolver divisões de polinômio por monômio.
Exemplo: (10a3b3 + 8ab2) : (2ab2)
O dividendo 10a3b3 + 8ab2 é formado por dois monômios. Dessa forma, o divisor 2ab2, que é um monômio, irá dividir cada um deles, veja:
(10a3b3 + 8ab2) : (2ab2)

Assim, transformamos a divisão de polinômio por monômio em duas divisões de monômio por monômio. Portanto, para concluir essa divisão é preciso dividir coeficiente por coeficiente e parte literal por parte literal.

Ou

Portanto, (10a3b3 + 8ab2) : (2ab2) = 5a2b + 4
Exemplo: (9x2y3 – 6x3y2 – xy) : (3x2y)
O dividendo 9x2y3 – 6x3y2 – xy é formado por três monômios. Dessa forma, o divisor 3x2y, que é um monômio irá dividir cada um deles, veja:

Assim, transformamos a divisão de polinômio por monômio em três divisões de monômio por monômio. Portanto, para concluir essa divisão é preciso dividir coeficiente por coeficiente e parte literal por parte Monômio é um tipo de polinômio que possui apenas um termo, ou seja, que possui apenas coeficiente e parte literal. Por exemplo:
a2 → 1 é o coeficiente e a2 parte literal.
3x2y → 3 é o coeficiente e x2y parte literal.
-5xy6 → -5 é o coeficiente e xy6 parte literal.
Explicação passo-a-passo:
ESPERO QUE TENHA AJUDADO❤❤❤