Dividindo o polinômio P(×)=׳-5ײ+8 pelo polinômio H(×)=×-3 encontraremos o quociente:
A) x²-5×+2
B) x³-3ײ+2×11
C) x²+2×+1
D) x³-5ײ+×-5
E) x²-2×-6
alguém poderia me ajudar .
Soluções para a tarefa
Resposta:
q(x) = x² - 2x - 6
r = -10
x³ - 5x² + 8 = p(x).q(x) + r
\begin{gathered} x^{3}-5x^{2} +8=p(x)(x^{2}-2x-6)-10 \\ x^{3}-5x^{2}+8+10=p(x)( x^{2} -2x-6) \\ x^{3}-5 x^{2} +18= p(x)(x^{2} -2x-6) \\ \\ p(x)= \frac{x^{3}-5 x^{2} +18}{x^{2} -2x-6} \\ \\ p(x)= \frac{(x-3)(x^{2} -2x-6)}{(x^{2} -2x-6)} \\ \\ p(x) = x-3\end{gathered}
x
3
−5x
2
+8=p(x)(x
2
−2x−6)−10
x
3
−5x
2
+8+10=p(x)(x
2
−2x−6)
x
3
−5x
2
+18=p(x)(x
2
−2x−6)
p(x)=
x
2
−2x−6
x
3
−5x
2
+1
p(x)=xx3
Explicação passo-a-passo:
q(x) = x² - 2x - 6
r = -10
x³ - 5x² + 8 = p(x).q(x) + r
\begin{gathered} x^{3}-5x^{2} +8=p(x)(x^{2}-2x-6)-10 \\ x^{3}-5x^{2}+8+10=p(x)( x^{2} -2x-6) \\ x^{3}-5 x^{2} +18= p(x)(x^{2} -2x-6) \\ \\ p(x)= \frac{x^{3}-5 x^{2} +18}{x^{2} -2x-6} \\ \\ p(x)= \frac{(x-3)(x^{2} -2x-6)}{(x^{2} -2x-6)} \\ \\ p(x) = x-3\end{gathered}
x
3
−5x
2
+8=p(x)(x
2
−2x−6)−10
x
3
−5x
2
+8+10=p(x)(x
2
−2x−6)
x
3
−5x
2
+18=p(x)(x
2
−2x−6)
p(x)=
x
2
−2x−6
x
3
−5x
2
+18
p(x)=
(x
2
−2x−6)
(x−3)(x
2
−2x−6)
p(x)=x−3