dispondo dos algarismos 0,1,2,3,4,5,6, determine: a) a quantidade de números pares de três algarismos que podemos formar;b) a quantidade de números pares de três algarismos distintos que podemos formar; c) a quantidade de números divisíveis por 5, formados por 4 algarismos distintos.
Soluções para a tarefa
Resposta:
podemos usar 0,1,2,3,4,5,6 são sete algarismos
a)
par final 0,2,4,6
final 0
1ª ñ pode ser o zero
3ª é o zero
2ª pode ser qualquer um
==> 6*7*1=42
final 2,4,6
3ª podem ser 3
1ª ñ pode ser o zero , nem o 3ª
2ª pode ser qualquer um
==> 5*7*3=105
total=42+105 =147
b)
par final 0,2,4,6
final 0
3ª é o 0
1ª não pode ser o 0
2ª não pode ser o 1ª nem o zero
==>6*5*1=30
final 2,4,6
3ª podem ser 3
1ª não pode ser o zero , nem o 3ª
2ª não pode ser o 1ª , nem o terceiro
5*5*3 =75
total =30+75=105
c)
divisíveis por 5 ==> final 0 ou 5
final 0
4ª é o 0
1ª pode ser qualquer um , menos o 4ª
2ª pode ser qualquer um menos o 4ª e o 1ª
3ª qualquer um que ainda não foi utilizado
6*5*4*1 =120
final 5
4ª é o 5
1ª pode ser qualquer um , menos o zero e o 4ª
2ª pode ser qualquer um , menos o 4ª,1ª e o 2ª
3ª todos aqueles que ainda não foram utilizados
5*5*4*1= 100
total = 120+100=220