Deve conter os calculos !
Um macaco de 10kg sobe por uma corda de massa
desprezível, que passa sobre o galho de uma árvore. A corda pode
deslizar, sem atrito, sobre a superfície do galho. A outra extremidade
da corda está presa a uma caixa cuja massa é 15 kg. O menor valor do
módulo da aceleração que o macaco deve ter ao subir pela corda, para
erguer a caixa, é igual a:
Dado: g = 9,8 m/s2.
a) 9,8 m/s2 b) 2,4 m/s2 c)
7,3 m/s2
d) 4,9 m/s2
e) zero
Soluções para a tarefa
Respondido por
56
Peso do macaco --- Pm=mm.g=10.9,8=98N --- seja T a intensidade da força que o macaco faz na corda para baixo, que (pelo princípio da ação e reação é a mesma com que a corda reage nele para cima) --- sobre o macaco você tem duas forças agindo, seu peso Pm=98N para baixo e a tração T para cima --- aplicando a lei fundamental da dinâmica sobre o macaco que sobe com aceleração a --- FR=m.a --- T – Pm=mm.a --- T – 98 = 10.a (I) --- a aceleração mínima a com que o macaco deve subir pela corda (e consequentemente qualquer ponto da corda descer com essa mesma aceleração a) para erguer a caixa deve ocorrer no instante em que a intensidade da força resultante sobre a caixa deve ser nula, ou seja, em que Pcaixa=T --- mc.g=T --- T=15.9,8=147N (II) impondo essa condição em (I) você obterá a aceleração mínima necessária para levantar a caixa (tirá-la do chão) --- (II) em (I) --- 147 – 98 = 10.amin --- amin=4,9m/s2
Perguntas interessantes
Geografia,
10 meses atrás
Geografia,
10 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Música,
1 ano atrás