Matemática, perguntado por BOATHENG, 1 ano atrás

Determine x e y sabendo-se que: x + y = 28 e x/y = ¾ .​

Soluções para a tarefa

Respondido por paulohenrigs
1

Temos duas informações, a primeira :

x + y = 28 \\ x = 28 - y

E a segunda:

 \frac{x}{y}  =  \frac{3}{4}  \\ 4x = 3y

Substituindo primeira informação na segunda, temos

4 \times (28 - y) = 3y \\ 112 - 4y = 3y \\  - 4y - 3y =  - 112 \\  - 7y =  - 112 \\ y =  \frac{112}{7}  \\ y = 16

Substituindo o valor de y na primeira informação, temos

x = 28 - 16 \\ x = 12

Respondido por marcusvini5
2

você vai primeiramente isolar o x na segunda equacao, depois substituir na primeira

( 1 ) ( 2 )

x + y = 28 x/y = 3/4

0.75 * y + y = 28 x = 3/4 * y ou 0.75 * y

0.75y + 1y = 28

1.75y = 28

y = 28/1.75

y = 16

(3)

x + y = 28

× = 28 - y

x = 28 - 16

x = 12

Perguntas interessantes