determine x e r para que z= (x+i)3 seja imaginario real
Soluções para a tarefa
Respondido por
7
É (x + i)elevado a 3? Se for, segue a solução:
(x + i)elevado a 3 = x elevado a 3 + 3 . x elevado a 2 . i + 3 . x . i elevado a 2 + i elevado a 3 =
x elevado a 3 + 3 . x elevado a 2 . i + 3 . x . (-1) + (-i) =
x elevado a 3 + 3 . x elevado a 2 . i - 3x - i =
(x elevado a 3 - 3x) + (3 . x elevado a 2 - 1)i
Para que ele seja real, a parte imaginária deve ser zero, portanto,
3 . x elevado a 2 - 1 = 0
3 . x elevado a 2 = 1
x elevado a 2 = 1/3
x = +- raiz quadrada de 1/3 = +- raiz quadrada de 1 / raiz quadrada de 3 = +- 1/raiz quadrada de 3 =
+- 1.raiz quadrada de 3 / raiz quadrada de 3 . raiz quadrada de 3 =
+- raiz quadrada de 3 / (raiz quadrada de 3)elevado a 2 = +- raiz quadrada de 3 / 3
(x + i)elevado a 3 = x elevado a 3 + 3 . x elevado a 2 . i + 3 . x . i elevado a 2 + i elevado a 3 =
x elevado a 3 + 3 . x elevado a 2 . i + 3 . x . (-1) + (-i) =
x elevado a 3 + 3 . x elevado a 2 . i - 3x - i =
(x elevado a 3 - 3x) + (3 . x elevado a 2 - 1)i
Para que ele seja real, a parte imaginária deve ser zero, portanto,
3 . x elevado a 2 - 1 = 0
3 . x elevado a 2 = 1
x elevado a 2 = 1/3
x = +- raiz quadrada de 1/3 = +- raiz quadrada de 1 / raiz quadrada de 3 = +- 1/raiz quadrada de 3 =
+- 1.raiz quadrada de 3 / raiz quadrada de 3 . raiz quadrada de 3 =
+- raiz quadrada de 3 / (raiz quadrada de 3)elevado a 2 = +- raiz quadrada de 3 / 3
Perguntas interessantes
Português,
10 meses atrás
Português,
10 meses atrás
Inglês,
10 meses atrás
Matemática,
1 ano atrás
Sociologia,
1 ano atrás
História,
1 ano atrás
Química,
1 ano atrás
Matemática,
1 ano atrás