Matemática, perguntado por deusacali, 1 ano atrás

Determine um vetor unitário simultaneamente ortogonal aos vetores u = ( -1, 4, 3 ) e v = ( 2, -1, 3 ). Obs* tem uma seta em cima do u e do v, mas é impossível editar aqui

 

Soluções para a tarefa

Respondido por Celio
209
Olá, Deusacali.

\begin{cases}\vec{u}=(-1,4,3)\\\vec{v}=(2,-1,3)\end{cases}

Seja \vec w o vetor perpendicular a \vec u\vec v.

Temos, então, que:

\vec{w}=\begin{bmatrix}\^i&\^j&\^k\\-1&4&3\\2&-1&3\end{bmatrix}\Rightarrow\vec{w}=15\^i+9\^j-7\^k=(15,9,-7)

Para torná-lo unitário, dividimos suas coordenadas por sua norma, ou seja:

\^w=\frac{\vec{w}}{||\vec{w}||}=\frac{(15,9,-7)}{\sqrt{15^2+9^2+(-7)^2}}=\frac{(15,9,-7)}{\sqrt{355}}\Rightarrow\\\\\\\boxed{\^w=(\frac{15}{\sqrt{355}},\frac{9}{\sqrt{355}},-\frac{7}{\sqrt{355}})}
Perguntas interessantes