Matemática, perguntado por leozyn85, 5 meses atrás

determine três numeros em PG de modo que sua soma seja 7 e seu produto seja 64/27

Soluções para a tarefa

Respondido por auditsys
4

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\begin{cases}\mathsf{a_1 + a_2 + a_3 = 7}\\\\\mathsf{a_1.a_2.a_3 = \dfrac{64}{27}}\\\\\mathsf{\dfrac{a_3}{a_2} = \dfrac{a_2}{a_1}}\end{cases}

\mathsf{a_1.a_3 = (a_2)^2}

\mathsf{a_1.a_3.a_2 = \dfrac{64}{27}}

\mathsf{(a_2)^3 = \dfrac{64}{27}}

\mathsf{a_2 = \dfrac{4}{3}}

\mathsf{a_1 + a_3 = 7 - \dfrac{4}{3}}

\mathsf{a_1 + a_3 = \dfrac{21 - 4}{3}}

\mathsf{a_1 + a_3 = \dfrac{17}{3}}

\begin{cases}\mathsf{a_1 + a_3 = \dfrac{17}{3}}\\\\\mathsf{a_1.a_3 = \dfrac{16}{9}}\end{cases}

\mathsf{a_1 = \dfrac{17}{3} - a_3}

\mathsf{a_1 = \dfrac{17 - 3a_3}{3}}

\mathsf{\left(\dfrac{17 - 3a_3}{3}\right).a_3 = \dfrac{16}{9}}

\mathsf{\left(\dfrac{17 - 3a_3}{1}\right).a_3 = \dfrac{16}{3}}

\mathsf{51.a_3 - 9.(a_3)^2 = 16}

\mathsf{9.(a_3)^2 - 51.a_3 + 16  = 0}

\mathsf{\Delta = b^2 - 4.a.c}

\mathsf{\Delta = (-51)^2 - 4.9.16}

\mathsf{\Delta = 2.601 - 576}

\mathsf{\Delta = 2.025}

\mathsf{x = \dfrac{-b \pm \sqrt{\Delta}}{2a} = \dfrac{51 \pm \sqrt{2.025}}{18} \rightarrow \begin{cases}\mathsf{x' = \dfrac{51 + 45}{18} = \dfrac{96}{18} = \dfrac{16}{3}}\\\\\mathsf{x'' = \dfrac{51 - 45}{18} = \dfrac{6}{18} = \dfrac{1}{3}}\end{cases}}

\mathsf{a_1 = \dfrac{17}{3} - \dfrac{1}{3}}

\mathsf{a_1 = \dfrac{16}{3}}

\boxed{\boxed{\mathsf{S = \left\{a_1 = \dfrac{16}{3};\:a_2 = \dfrac{4}{3};\:a_3 = \dfrac{1}{3}\right\}}}}


Math739: Excelente!!!
Perguntas interessantes