Matemática, perguntado por kaiserfx8, 10 meses atrás

Determine, se existem, os produtos:​

Anexos:

Soluções para a tarefa

Respondido por CyberKirito
468

O produto de matrizes existe se e somente se o número de colunas da primeira matriz for igual ao número de linhas da 2ª matriz.

a)

\begin{bmatrix}1&2\\3&4\end{bmatrix} \begin{bmatrix}2&3\\-2&1\end{bmatrix}= \\  \begin{bmatrix}1.2+2.(-2)&1.3+2.1\\3.2+4.(-2)&3.3+4.1\end{bmatrix} \\ = \begin{bmatrix}-2&5\\-2&13\end{bmatrix}

b)

\begin{bmatrix}1&-2\\3&4\end{bmatrix}.\begin{bmatrix}-2&3&2&-1\\-1&0&0&-4\end{bmatrix}\\=\begin{bmatrix}1.-2-2.(-1)&1.3-2.0&1.2-2.0&1.(-1)-2.(-4)\\3.(-2)+4.(-1)&3.3+4.0&3.2+4.0&3.(-1)+4.(-4)\end{bmatrix}\\= \begin{bmatrix}0&3&2&7\\-10&9&6&-19\end{bmatrix}

c)

O produto é impossível pois o número de colunas da 1ª matriz é diferente do número de linhas da 2ª matriz ferindo a definição de produto de matrizes.

d)

\begin{bmatrix}3&4&1\\5&6&1\\7&8&1\end{bmatrix}.\begin{bmatrix}2\\-3\\4\end{bmatrix}\\=\begin{bmatrix}3.2+4.(-3)+1.4\\5.2+6.(-3)+1.4\\7.2+8.(-3)+1.4\end{bmatrix}\\= \begin{bmatrix}-2\\-4\\-6\end{bmatrix}

e)

\begin{bmatrix}-5&0\\-1&3\\1&1\\2&2\end{bmatrix}.\begin{bmatrix}3&-2\\1&5\end{bmatrix}

\begin{bmatrix}-5.3+0.1&amp;-5.(-2)+0.5\\-1.3+3.1&amp;-1(-2)+3.5\\1.3+1.1&amp;1.(-2)+1.5\\2.3+2.1&amp;2.(-2)+2.5\end{bmatrix}\\=\begin{vmatrix}-15&amp;10\\0&amp;17\\4&amp;3\\8&amp;6\end{vmatrix}</p><p>

Respondido por glendacristinam
2

a)  \left[\begin{array}{ccc}-2&amp;5\\-2&amp;13\end{array}\right]                                          b) \left[\begin{array}{cccc}0&amp;3&amp;2&amp;7\\-10&amp;9&amp;6&amp;-19\end{array}\right]

c) não é matriz

d)  \left[\begin{array}{ccc}-2\\-4\\-6\end{array}\right]                                                 e)  \left[\begin{array}{ccc}-15&amp;10\\-6&amp;17\\4&amp;3\\9&amp;6\end{array}\right]

f) \left[\begin{array}{ccc}8&amp;20&amp;29\\1&amp;16&amp;29\\-2&amp;4&amp;12\end{array}\right]                                     g)  \left[\begin{array}{ccc}12&amp;-4&amp;16\\18&amp;-6&amp;24\\30&amp;-10&amp;40\end{array}\right]

h) não é matriz

i) a -  \left[\begin{array}{ccc}11&amp;4\\4&amp;3\\10&amp;3\end{array}\right]                                         b - não é matriz

c -  \left[\begin{array}{ccc}1\\8\\-8\end{array}\right]                                                 d -  \left[\begin{array}{ccc}1\\8\\-8\end{array}\right]

e - \left[\begin{array}{ccc}5&amp;4&amp;2\\6&amp;6&amp;1\end{array}\right]

Multiplicação de matriz e matriz transposta

Na multiplicação de matriz, o número de colunas da primeira matriz, sempre deve ser igual ao número de linhas da segunda matriz.

Na matriz transposta, a primeira linha vira a primeira coluna e a segunda linha, vira a segunda coluna.

a) \left[\begin{array}{ccc}1&amp;2\\3&amp;4\end{array}\right] . \left[\begin{array}{ccc}2&amp;3\\-2&amp;1\end{array}\right] = \left[\begin{array}{ccc}1.2+2.(-2)&amp;1.3+2.1\\3.2+4.(-2)&amp;3.3+4.1\end{array}\right] = \left[\begin{array}{ccc}-2&amp;5\\-2&amp;13\end{array}\right]

b) \left[\begin{array}{ccc}1&amp;-2\\-2&amp;4\end{array}\right] . \left[\begin{array}{cccc}-2&amp;3&amp;2&amp;-1\\-1&amp;0&amp;0&amp;-4\end{array}\right] =

\left[\begin{array}{cccc}1.(-2)+(-2).(-1)&amp;1.3+(-2).0&amp;1.2+(-2).0&amp;1.(-1)+(-2).(-4)\\3.(-2)+4.(-1)&amp;3.3+4.0&amp;3.3+4.0&amp;3.(-1)+4.(-4)\end{array}\right] =

\left[\begin{array}{cccc}0&amp;3&amp;2&amp;7\\-10&amp;9&amp;6&amp;-19\end{array}\right]

d) \left[\begin{array}{ccc}3&amp;4&amp;1\\5&amp;6&amp;1\\7&amp;8&amp;1\end{array}\right] . \left[\begin{array}{ccc}2\\-3\\4\end{array}\right] = \left[\begin{array}{ccc}3.2+4.(-3)+1.4\\5.2+6.(-3)+1.4\\7.2+8.(-3)+1.4\end{array}\right] = \left[\begin{array}{ccc}-2\\-4\\-6\end{array}\right]

e) \left[\begin{array}{ccc}-5&amp;0\\-1&amp;3\\1&amp;1\\2&amp;2\end{array}\right] . \left[\begin{array}{ccc}3&amp;-2\\1&amp;5\end{array}\right] = \left[\begin{array}{ccc}-5.3+0.1&amp;-5.(-2)+0.5\\-1.3+3.1&amp;-1.(-2)+3.5\\1.3+1.1&amp;1.(-2)+1.5\\2.3+2.1&amp;2.(-2)+2.5\end{array}\right] = \left[\begin{array}{ccc}-15&amp;10\\-6&amp;17\\4&amp;3\\9&amp;6\end{array}\right]

f) \left[\begin{array}{ccc}8&amp;2&amp;-1\\1&amp;7&amp;5\\-2&amp;4&amp;6\end{array}\right] . \left[\begin{array}{ccc}1&amp;2&amp;3\\0&amp;2&amp;3\\0&amp;0&amp;1\end{array}\right] =

\left[\begin{array}{ccc}8.1+2.0+(-1).0&amp;8.2+2.2+(-1).0&amp;8.3+2.3+(-1).1\\1.1+7.0+5.0&amp;1.2+7.2+5.0&amp;1.3+7.3+5.1\\(-2).1+4.0+6.0&amp;(-2).2+4.2+6.0&amp;(-2).3+4.3+6.1\end{array}\right] =

\left[\begin{array}{ccc}8&amp;20&amp;29\\1&amp;16&amp;29\\-2&amp;4&amp;12\end{array}\right]

g) \left[\begin{array}{ccc}2\\3\\5\end{array}\right] . \left[\begin{array}{ccc}6&amp;-2&amp;8\end{array}\right] = \left[\begin{array}{ccc}2.6&amp;2.(-2)&amp;2.8\\3.6&amp;3.(-2)&amp;3.8\\5.6&amp;5.(-2)&amp;5.8\end{array}\right] = \left[\begin{array}{ccc}12&amp;-4&amp;16\\18&amp;-6&amp;24\\30&amp;-10&amp;40\end{array}\right]

A = \left[\begin{array}{ccc}1&amp;3\\2&amp;0\\-1&amp;4\end{array}\right]    B = \left[\begin{array}{ccc}2&amp;1\\3&amp;1\end{array}\right]     C = \left[\begin{array}{ccc}4\\-1\end{array}\right]

Determine:

a) A.B ⇒ \left[\begin{array}{ccc}1.2+3.3&amp;1.1+3.1\\2.2+0.3&amp;2.1+0.1\\-1.2+4.3&amp;-1.1+4.1\end{array}\right] = \left[\begin{array}{ccc}11&amp;4\\4&amp;3\\10&amp;3\end{array}\right]

c) A.C ⇒ \left[\begin{array}{ccc}1.4+3.(-1)\\2.4+0.(-1)\\-1.4+4.(-1)\end{array}\right] = \left[\begin{array}{ccc}1\\8\\-8\end{array}\right]

d) Bt.C ⇒ \left[\begin{array}{ccc}2&amp;3\\1&amp;1\end{array}\right] . \left[\begin{array}{ccc}4\\-1\end{array}\right] = \left[\begin{array}{ccc}2.4+3.(-1)\\1.4+1.(-1)\end{array}\right] = \left[\begin{array}{ccc}5\\3\end{array}\right]

e) B.At ⇒ \left[\begin{array}{ccc}2&amp;1\\3&amp;1\end{array}\right] . \left[\begin{array}{ccc}1&amp;2&amp;-1\\3&amp;0&amp;4\end{array}\right] = \left[\begin{array}{ccc}2.1+1.3&amp;2.2+1.0&amp;2.(-1)+1.4\\3.1+1.3&amp;3.2+1.0&amp;3.(-1)+1.4\end{array}\right] =

\left[\begin{array}{ccc}5&amp;4&amp;2\\6&amp;6&amp;1\end{array}\right]

Saiba mais sobre matriz em: https://brainly.com.br/tarefa/45145604

#SPJ3

Anexos:
Perguntas interessantes