Matemática, perguntado por rayfftnt, 1 ano atrás

Determine qual o primeiro termo de uma progressão geométrica em quê A7=729 e a4= 27

Soluções para a tarefa

Respondido por kelemen
1
Problema relativamente simples, bastando aplicar a fórmula do Termo Geral de uma PG.
Fórmula do Termo Geral de uma PG:
An = A1.q*, onde * = n - 1⇒
A7 = A1.q*, onde * = 6⇒
729 = A1.q*, onde* = 6      (relação I)

A4 = A1.q³,⇒
27 = A1.q³                          (relação II)

Da relação I, vem:
729 = A1.q³.q³⇒Substituindo a relação II abaixo vem:
729 = 27.q³⇒
729 = q³⇒
27
27 = q³⇒
3³ = q³⇒
q = 3

Substituindo na (relação II), vem:
27 = A1.q³⇒
27 = A1.3³⇒
27 = 27.A1⇒
A1 = 1

Agora que já sabemos o valor de q e A1, podemos calcular A5

A5 = A1.3².3²⇒
A5 = 1.9.9⇒
A5 = 81

Perguntas interessantes