Matemática, perguntado por juliajaques, 1 ano atrás

Determine para quais valores de K para que a equação 2x(elevado a 2)+4x+5k=0 tenha raizes reais distintas

Soluções para a tarefa

Respondido por Usuário anônimo
6

   2x^2 + 4x + 5k = 0

     A natureza das raízes de uma equação quadrática é definida pelo
     discriminante, Δ
                                 Δ b^2 - 4.a.c
                                                     Δ > 0, duas raízes reais diferentes
                                                     Δ = 0, duas raízes reais iguais
                                                     Δ < 0, duas raízes complexas diferentes
Então, na equação em estudo
           Δ = 4^2 - 4.2.5k
              = 16 - 40k > 0
                   16 > 40k
                    16/40 > k
                       k < 16/40
                                                   k < 2/5
Respondido por AnnahLaryssa
2

A= 2

B= 4

C= 5k

Uma equação do 2º grau possui duas raízes reais e distintas quando ∆ > 0.

∆= b² - 4ac

b² - 4ac > 0

4² - 4 • 2 • 5k > 0

16 - 8 • 5k > 0

16 - 40k > 0

- 40k > 0 - 16

- 40k > - 16 (-1)

40k < 16

k < 16/40 (÷8)

k < 2/5

Perguntas interessantes