Matemática, perguntado por Fernanda012, 1 ano atrás

Determine os valores de x,y e z sabendo que são inversamente proporcionais aos numeros 2, 3 e 4 ordem, e que x+y+z=26.

Soluções para a tarefa

Respondido por Niiya
10
x=\frac{k}{20}\\\\y=\frac{k}{3}\\\\z=\frac{k}{4}
___________________________

x+y+z=26\\\\\dfrac{k}{2}+\dfrac{k}{3}+\dfrac{k}{4}=26

Multiplicando todos os membros da equação por 12 (mmc entre 1, 2, 3 e 4):

12\cdot\dfrac{k}{2}+12\cdot\dfrac{k}{3}+12\cdot\dfrac{k}{4}=12\cdot26\\\\\\6k+4k+3k=12*26\\\\13k=12*26\\\\1k=12*2\\\\k=24
____________________

x=\frac{k}{2}=\frac{24}{2}~~~\therefore~~~\boxed{\boxed{x=12}}\\\\y=\frac{k}{3}=\frac{24}{3}~~~\therefore~~~\boxed{\boxed{y=8}}\\\\z=\frac{k}{4}=\frac{24}{4}~~~\therefore~~~\boxed{\boxed{z=6}}
Respondido por Usuário anônimo
5
 \left \{ {{x+y+z=26} \atop { \frac{x}{ \frac{1}{2} }=  \frac{y}{ \frac{1}{3} } = \frac{z}{ \frac{1}{4} }

 \frac{x+y+z}{ \frac{1}{2}+ \frac{1}{3}+ \frac{1}{4}   } = \frac{26}{ \frac{6+4+3}{12} } = \frac{26}{ \frac{13}{12} } = \frac{26.12}{13}=24

 \frac{x}{ \frac{1}{2} } =2x

2x=24

x= \frac{24}{2}
x=12

 \frac{y}{ \frac{1}{3} } =3y

3x=24

y= \frac{24}{3}
y=8

 \frac{z}{ \frac{1}{4} } =4z

4z=24

z= \frac{24}{4}
z=6

Usuário anônimo: valeu!!!!
Perguntas interessantes