Matemática, perguntado por anac55lara678590, 6 meses atrás

determine os valores de
f( \times ) = log \frac{ \times 2}{2}
para:
a)f(8)
b) f(1)
c)f(1/2)
d)f(1/16)​

Soluções para a tarefa

Respondido por Makaveli1996
0

\boxed{ f(x) = log_{10}( \frac{x {}^{2} }{2} ) } \\

a) \\ f(8) =  log_{10}( \frac{8 {}^{2} }{2} )  \\ f(8) =  log_{10}( \frac{64}{2} )  \\ f(8) =  log_{10}(32)  \\ f(8) =  log_{10}(2 {}^{5} )  \\ \boxed{\boxed{\boxed{f(8) = 5 log_{10}(2) }}} \\

b) \\ f(1) =  log_{10}( \frac{1 {}^{2} }{2} )  \\ f(1) =  log_{10}( \frac{1}{2} )  \\ f(1) =  log_{10}(2 {}^{ - 1} )  \\ \boxed{\boxed{\boxed{f(1) =  -  log_{10}(2) }}} \\

c) \\ f( \frac{1}{2} ) =  log_{10}( \frac{( \frac{1}{2} ) {}^{2} }{2} )  \\ f( \frac{1}{2} ) =  log_{10}( \frac{ \frac{1}{4} }{2} )  \\ f( \frac{1}{2} ) =  log_{10}( \frac{1}{8} )  \\ f( \frac{1}{2} ) =  log_{10}(2 {}^{ - 3} )  \\ \boxed{\boxed{\boxed{ f( \frac{1}{2} ) = - 3 log_{10}(2) }}} \\

d) \\ f( \frac{1}{16} ) =  log_{10}( \frac{ (\frac{1}{16}   ) {}^{2} }{2} )  \\ f( \frac{1}{16} ) =  log_{10}( \frac{ \frac{1}{256} }{2} )  \\ f( \frac{1}{16} ) =  log_{10}( \frac{1}{512} )  \\ f( \frac{1}{16} ) =  log_{10}(2 {}^{- 9} )  \\\boxed{\boxed{\boxed{f( \frac{1}{16} ) =  - 9 log_{10}(2) }}}  \\

att. yrz

Perguntas interessantes