Matemática, perguntado por Thaisws13, 1 ano atrás

Determine os números complexos z1=1+zi, z2=-1+3i e z3=z-zi,Calculem:
3z+4i=2-6i

Soluções para a tarefa

Respondido por Lukyo
3
Caso tenha problemas para visualizar pelo aplicativo, experimente abrir pelo navegador:  https://brainly.com.br/tarefa/8101164

_______________


Determinar os números complexos

•   \mathsf{z_1=1+zi}

•   \mathsf{z_1=-1+3i}

•   \mathsf{z_3=z-zi}


dado que \mathsf{z} satisfaz a seguinte igualdade:

\mathsf{3z+4i=2-6i}\\\\ \mathsf{3z=2-6i-4i}\\\\ \mathsf{3z=2-10i}\\\\ \mathsf{z=\dfrac{2-10i}{3}}\\\\\\ \mathsf{z=\dfrac{2}{3}-\dfrac{10}{3}\,i\qquad\quad\checkmark}


Dessa forma temos que

•   \mathsf{z_1=1+zi}

\mathsf{z_1=1+\bigg(\dfrac{2}{3}-\dfrac{10}{3}\,i\bigg)\cdot i}\\\\\\ \mathsf{z_1=1+\dfrac{2}{3}\,i-\dfrac{10}{3}\,i^2}\\\\\\ \mathsf{z_1=1+\dfrac{2}{3}\,i-\dfrac{10}{3}\cdot (-1)}\\\\\\ \mathsf{z_1=1+\dfrac{2}{3}\,i+\dfrac{10}{3}}

\mathsf{z_1=\dfrac{3}{3}+\dfrac{2}{3}\,i+\dfrac{10}{3}}\\\\\\ \mathsf{z_1=\dfrac{3+10}{3}+\dfrac{2}{3}\,i}\\\\\\ \mathsf{z_1=\dfrac{13}{3}+\dfrac{2}{3}\,i\qquad\quad\checkmark}


•   \mathsf{z_2=-1+3i}

Este número já está determinado, ele não depende de \mathsf{z}.


•   \mathsf{z_3=z-zi}

\mathsf{z_3=\bigg(\dfrac{2}{3}-\dfrac{10}{3}\,i\bigg)-\bigg(\dfrac{2}{3}-\dfrac{10}{3}\,i\bigg)\cdot
 i}\\\\\\ 
\mathsf{z_3=\dfrac{2}{3}-\dfrac{10}{3}\,i-\dfrac{2}{3}\,i+\dfrac{10}{3}\,i^2}\\\\\\
 \mathsf{z_3=\dfrac{2}{3}-\dfrac{10+2}{3}\,i+\dfrac{10}{3}\cdot 
(-1)}\\\\\\ 
\mathsf{z_3=\dfrac{2}{3}-\dfrac{12}{3}\,i-\dfrac{10}{3}}

\mathsf{z_3=\dfrac{2-10}{3}-\dfrac{12}{3}\,i}\\\\\\ \mathsf{z_3=-\,\dfrac{8}{3}-4i\qquad\quad\checkmark}


Bons estudos! :-)

Perguntas interessantes