Determine o volume do sólido de revolução gerado pela função f(x)=cos(x), no intervalo de integração π≤x≤2π. represente graficamente o sólido.
Soluções para a tarefa
Respondido por
3
O volume do sólido de revolução gerado pela rotação do gráfico de y = f(x) em torno do eixo x, no intervalo [a,b], é definido pela integral
![\boxed{\boxed{V=\displaystyle\pi\int_{a}^{b}[f(x)]^{2}dx}} \boxed{\boxed{V=\displaystyle\pi\int_{a}^{b}[f(x)]^{2}dx}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7BV%3D%5Cdisplaystyle%5Cpi%5Cint_%7Ba%7D%5E%7Bb%7D%5Bf%28x%29%5D%5E%7B2%7Ddx%7D%7D)
___________________________
Temos a = π, b = 2π e f(x) = cos(x). Portanto:
![V=\displaystyle\pi\int_{\pi}^{2\pi}[cos(x)]^{2}dx\\\\\\V=\pi\int_{\pi}^{2\pi}cos^{2}(x)dx V=\displaystyle\pi\int_{\pi}^{2\pi}[cos(x)]^{2}dx\\\\\\V=\pi\int_{\pi}^{2\pi}cos^{2}(x)dx](https://tex.z-dn.net/?f=V%3D%5Cdisplaystyle%5Cpi%5Cint_%7B%5Cpi%7D%5E%7B2%5Cpi%7D%5Bcos%28x%29%5D%5E%7B2%7Ddx%5C%5C%5C%5C%5C%5CV%3D%5Cpi%5Cint_%7B%5Cpi%7D%5E%7B2%5Cpi%7Dcos%5E%7B2%7D%28x%29dx)
____
Sabemos que

Então:
![V=\pi\displaystyle\int_{\pi}^{2\pi}cos^{2}(x)dx\\\\\\V=\pi\int_{\pi}^{2\pi}\dfrac{1}{2}\cdot(cos(2x)+1)dx\\\\\\V=\dfrac{\pi}{2}\int_{\pi}^{2\pi}cos(2x)+1dx\\\\\\V=\dfrac{\pi}{2}\int_{\pi}^{2\pi}cos(2x)dx+\dfrac{\pi}{2}\int_{\pi}^{2\pi}1dx\\\\\\\dfrac{\pi}{2}\int_{\pi}^{2\pi}cos(2x)dx+\dfrac{\pi}{2}\int_{\pi}^{2\pi}dx\\\\\\V=\dfrac{\pi}{2}\int_{\pi}^{2\pi}cos(2x)dx+\dfrac{\pi}{2}[x]_{\pi}^{2\pi} V=\pi\displaystyle\int_{\pi}^{2\pi}cos^{2}(x)dx\\\\\\V=\pi\int_{\pi}^{2\pi}\dfrac{1}{2}\cdot(cos(2x)+1)dx\\\\\\V=\dfrac{\pi}{2}\int_{\pi}^{2\pi}cos(2x)+1dx\\\\\\V=\dfrac{\pi}{2}\int_{\pi}^{2\pi}cos(2x)dx+\dfrac{\pi}{2}\int_{\pi}^{2\pi}1dx\\\\\\\dfrac{\pi}{2}\int_{\pi}^{2\pi}cos(2x)dx+\dfrac{\pi}{2}\int_{\pi}^{2\pi}dx\\\\\\V=\dfrac{\pi}{2}\int_{\pi}^{2\pi}cos(2x)dx+\dfrac{\pi}{2}[x]_{\pi}^{2\pi}](https://tex.z-dn.net/?f=V%3D%5Cpi%5Cdisplaystyle%5Cint_%7B%5Cpi%7D%5E%7B2%5Cpi%7Dcos%5E%7B2%7D%28x%29dx%5C%5C%5C%5C%5C%5CV%3D%5Cpi%5Cint_%7B%5Cpi%7D%5E%7B2%5Cpi%7D%5Cdfrac%7B1%7D%7B2%7D%5Ccdot%28cos%282x%29%2B1%29dx%5C%5C%5C%5C%5C%5CV%3D%5Cdfrac%7B%5Cpi%7D%7B2%7D%5Cint_%7B%5Cpi%7D%5E%7B2%5Cpi%7Dcos%282x%29%2B1dx%5C%5C%5C%5C%5C%5CV%3D%5Cdfrac%7B%5Cpi%7D%7B2%7D%5Cint_%7B%5Cpi%7D%5E%7B2%5Cpi%7Dcos%282x%29dx%2B%5Cdfrac%7B%5Cpi%7D%7B2%7D%5Cint_%7B%5Cpi%7D%5E%7B2%5Cpi%7D1dx%5C%5C%5C%5C%5C%5C%5Cdfrac%7B%5Cpi%7D%7B2%7D%5Cint_%7B%5Cpi%7D%5E%7B2%5Cpi%7Dcos%282x%29dx%2B%5Cdfrac%7B%5Cpi%7D%7B2%7D%5Cint_%7B%5Cpi%7D%5E%7B2%5Cpi%7Ddx%5C%5C%5C%5C%5C%5CV%3D%5Cdfrac%7B%5Cpi%7D%7B2%7D%5Cint_%7B%5Cpi%7D%5E%7B2%5Cpi%7Dcos%282x%29dx%2B%5Cdfrac%7B%5Cpi%7D%7B2%7D%5Bx%5D_%7B%5Cpi%7D%5E%7B2%5Cpi%7D)
Se trocarmos 2x por u:

Se x = π -----> u = 2π
Se x = 2π ---> u = 4π
Então:
![V=\displaystyle\dfrac{\pi}{2}\int_{2\pi}^{4\pi}\dfrac{1}{2}cos(u)du+\dfrac{\pi}{2}(2\pi-\pi)\\\\\\V=\dfrac{\pi}{4}\int_{2\pi}^{4\pi}cos(u)du+\dfrac{\pi}{2}\cdot\pi\\\\\\V=\dfrac{\pi}{4}[sen(u)]_{2\pi}^{4\pi}+\dfrac{\pi^{2}}{2}\\\\\\V=\dfrac{\pi}{4}(sen(
\pi)-sen(2\pi))+\dfrac{\pi^{2}}{2}\\\\\\V=\dfrac{\pi}{4}(0-0)+\dfrac{\pi^{2}}{2}\\\\\\\boxed{\boxed{V=\dfrac{\pi^{2}}{2}~~uv}} V=\displaystyle\dfrac{\pi}{2}\int_{2\pi}^{4\pi}\dfrac{1}{2}cos(u)du+\dfrac{\pi}{2}(2\pi-\pi)\\\\\\V=\dfrac{\pi}{4}\int_{2\pi}^{4\pi}cos(u)du+\dfrac{\pi}{2}\cdot\pi\\\\\\V=\dfrac{\pi}{4}[sen(u)]_{2\pi}^{4\pi}+\dfrac{\pi^{2}}{2}\\\\\\V=\dfrac{\pi}{4}(sen(
\pi)-sen(2\pi))+\dfrac{\pi^{2}}{2}\\\\\\V=\dfrac{\pi}{4}(0-0)+\dfrac{\pi^{2}}{2}\\\\\\\boxed{\boxed{V=\dfrac{\pi^{2}}{2}~~uv}}](https://tex.z-dn.net/?f=V%3D%5Cdisplaystyle%5Cdfrac%7B%5Cpi%7D%7B2%7D%5Cint_%7B2%5Cpi%7D%5E%7B4%5Cpi%7D%5Cdfrac%7B1%7D%7B2%7Dcos%28u%29du%2B%5Cdfrac%7B%5Cpi%7D%7B2%7D%282%5Cpi-%5Cpi%29%5C%5C%5C%5C%5C%5CV%3D%5Cdfrac%7B%5Cpi%7D%7B4%7D%5Cint_%7B2%5Cpi%7D%5E%7B4%5Cpi%7Dcos%28u%29du%2B%5Cdfrac%7B%5Cpi%7D%7B2%7D%5Ccdot%5Cpi%5C%5C%5C%5C%5C%5CV%3D%5Cdfrac%7B%5Cpi%7D%7B4%7D%5Bsen%28u%29%5D_%7B2%5Cpi%7D%5E%7B4%5Cpi%7D%2B%5Cdfrac%7B%5Cpi%5E%7B2%7D%7D%7B2%7D%5C%5C%5C%5C%5C%5CV%3D%5Cdfrac%7B%5Cpi%7D%7B4%7D%28sen%28%0A%5Cpi%29-sen%282%5Cpi%29%29%2B%5Cdfrac%7B%5Cpi%5E%7B2%7D%7D%7B2%7D%5C%5C%5C%5C%5C%5CV%3D%5Cdfrac%7B%5Cpi%7D%7B4%7D%280-0%29%2B%5Cdfrac%7B%5Cpi%5E%7B2%7D%7D%7B2%7D%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7BV%3D%5Cdfrac%7B%5Cpi%5E%7B2%7D%7D%7B2%7D%7E%7Euv%7D%7D)
___________________________
Temos a = π, b = 2π e f(x) = cos(x). Portanto:
____
Sabemos que
Então:
Se trocarmos 2x por u:
Se x = π -----> u = 2π
Se x = 2π ---> u = 4π
Então:
Anexos:

Perguntas interessantes
Matemática,
1 ano atrás
Inglês,
1 ano atrás
Biologia,
1 ano atrás
Português,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
Artes,
1 ano atrás
Química,
1 ano atrás