determine o vigésimo oitavo termo da PA (3,7,....)
Soluções para a tarefa
an = 3 + 108
an = 111
Olá! Segue a resposta com algumas explicações.
(I)Interpretação do problema:
Da P.A. (3, 7,...), tem-se:
a)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição:3
b)vigésimo oitavo termo (a₂₈): ?
c)número de termos (n): 28 (Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 28ª), equivalente ao número de termos.)
d)Embora não se saiba o valor do vigésimo oitavo termo, apenas pela observação dos três primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos sempre crescem, afastam-se do zero, particularmente à sua direita, pensando-se na reta numérica e, para que isto aconteça, necessariamente se deve somar um valor constante positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.
===========================================
(II)Determinação da razão (r) da progressão aritmética:
Observação 1: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.
r = a₂ - a₁ ⇒
r = 7 - 3 ⇒
r = 4 (Razão positiva, conforme prenunciado no item d acima.)
===========================================
(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o vigésimo oitavo termo:
an = a₁ + (n - 1) . r ⇒
a₂₈ = a₁ + (n - 1) . (r) ⇒
a₂₈ = 3 + (28 - 1) . (4) ⇒
a₂₈ = 3 + (27) . (4) ⇒ (Veja a Observação 2.)
a₂₈ = 3 + 108 ⇒
a₂₈ = 111
Observação 2: Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais diferentes, +x+ ou -x-, resultam sempre em sinal de positivo (+).
Resposta: O 28º termo da P.A.(3, 7,...) é 111.
=======================================================
DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA
→Substituindo a₂₈ = 111 na fórmula do termo geral da PA e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o vigésimo oitavo termo realmente corresponde ao afirmado:
an = a₁ + (n - 1) . r ⇒
a₂₈ = a₁ + (n - 1) . (r) ⇒
111 = a₁ + (28 - 1) . (4) ⇒
111 = a₁ + (27) . (4) ⇒
111 = a₁ + 108 ⇒ (Passa-se 108 ao 1º membro e altera-se o sinal.)
111 - 108 = a₁ ⇒
3 = a₁ ⇔ (O símbolo ⇔ significa "equivale a".)
a₁ = 3 (Provado que a₂₈ = 111.)
→Veja outras tarefas relacionadas a cálculo de termos em progressão aritmética e resolvidas por mim:
https://brainly.com.br/tarefa/25855791
https://brainly.com.br/tarefa/25888655
https://brainly.com.br/tarefa/2863337
https://brainly.com.br/tarefa/4081079
brainly.com.br/tarefa/3596616
brainly.com.br/tarefa/25713044
brainly.com.br/tarefa/4130142
brainly.com.br/tarefa/10210269
brainly.com.br/tarefa/14650577
brainly.com.br/tarefa/8907084
brainly.com.br/tarefa/25790757
brainly.com.br/tarefa/1123082
brainly.com.br/tarefa/25743374