Determine o valor numérico de A= cos2.x - cotg (9/4 x) sobre sen x/2 + tg (9/4 x)
com x= pi/3 rad
Soluções para a tarefa
Respondido por
0
1Rad=180º
x= \dfrac{180}{3}=60\º
Com o radiano transformado em grau ,Vamos substituir na expressão trigonométrica.
A= \dfrac{Cos(2x)-cotg (\frac{9}{4}x) }{Seno (\frac{x}{2})-Tg (\frac{9}{4}x)} \\\\\\\\ A= \dfrac{Cos(2.60)-cotg (\frac{9}{4}.60) }{Seno (\frac{60}{2})-Tg (\frac{9}{4}60)}\\\\\ Organizando a expressao.\\\\\ A= \dfrac{Cos(120\º)-cotg (135\°) }{Seno (30\º)-Tg (135\º)}\\\\\\\\ A= \dfrac{ -\frac{1}{2}-(-1) }{(\frac{1}{2})-(-1)}\\\\\\\ A= \frac{- \frac{1}{2}+1 }{ \frac{1}{2}+1 }\\\\\\\ A= \dfrac{ -\dfrac{1}{2} }{ \dfrac{3}{2} }
Conserva a primeira e multiplica pelo inverso da egunda.
A= -\dfrac{1}{2}. \dfrac{2}{3} \\\\\\ A= -\dfrac{1}{3}
\boxed{Resposta: A= -\frac{1}{3} }
Rafael0004:
aqui na folha só tem as respostas A) -1 B) 1 C) 2 D) Raiz de 3 e E raiz de 3/3
Perguntas interessantes
Português,
7 meses atrás
Física,
7 meses atrás
História,
7 meses atrás
História,
11 meses atrás
Sociologia,
11 meses atrás
Lógica,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás