Matemática, perguntado por carlos345556ttt, 5 meses atrás

Determine o valor máximo( ou mínimo) e a abscissa do ponto máximo(ou do ponto mínimo) de cada uma das funções

Anexos:

Soluções para a tarefa

Respondido por auditsys
5

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{y = 4x^2 + 2x - 2}

\mathsf{y = -\dfrac{\Delta}{4a}}

\mathsf{y = -\dfrac{b^2 - 4.a.c}{4a}}

\mathsf{y = -\dfrac{2^2 - 4.4.(-2)}{4.4}}

\mathsf{y = -\dfrac{4 + 32}{16}}

\mathsf{y = -\dfrac{36}{16}}

\boxed{\boxed{\mathsf{y = -\dfrac{9}{4}}}}

\mathsf{x = -\dfrac{b}{2a}}

\mathsf{x = -\dfrac{2}{8}}

\boxed{\boxed{\mathsf{x = -\dfrac{1}{4}}}}

\mathsf{y = -x^2 - 2x + 3}

\mathsf{y = -\dfrac{\Delta}{4a}}

\mathsf{y = -\dfrac{b^2 - 4.a.c}{4a}}

\mathsf{y = -\dfrac{(-2)^2 - 4.(-1).3}{4.(-1)}}

\mathsf{y = -\dfrac{4 + 12}{-4}}

\mathsf{y = -\dfrac{16}{-4}}

\boxed{\boxed{\mathsf{y = 4}}}

\mathsf{x = -\dfrac{b}{2a}}

\mathsf{x = -\dfrac{-2}{-2}}

\boxed{\boxed{\mathsf{x = -1}}}

\mathsf{y = 3x^2 -12x}

\mathsf{y = -\dfrac{\Delta}{4a}}

\mathsf{y = -\dfrac{b^2 - 4.a.c}{4a}}

\mathsf{y = -\dfrac{(-12)^2 - 4.3.0}{4.3}}

\mathsf{y = -\dfrac{144 - 0}{12}}

\mathsf{y = -\dfrac{144}{12}}

\boxed{\boxed{\mathsf{y = -12}}}

\mathsf{x = -\dfrac{b}{2a}}

\mathsf{x = \dfrac{12}{6}}

\boxed{\boxed{\mathsf{x = 2}}}

\mathsf{y = -x^2 + x - \dfrac{1}{2}}

\mathsf{y = -\dfrac{\Delta}{4a}}

\mathsf{y = -\dfrac{b^2 - 4.a.c}{4a}}

\mathsf{y = -\dfrac{1^2 - 4.(-1).\left(-\dfrac{1}{2}\right)}{4(-1)}}

\mathsf{y = -\dfrac{1 - 2}{-4}}

\mathsf{y = -\dfrac{-1}{-4}}

\boxed{\boxed{\mathsf{y = -\dfrac{1}{4}}}}

\mathsf{x = -\dfrac{b}{2a}}

\mathsf{x = -\dfrac{1}{-2}}

\boxed{\boxed{\mathsf{x = \dfrac{1}{2}}}}

Perguntas interessantes