Matemática, perguntado por mell061524, 4 meses atrás

determine o valor do determinante da Matriz A​

Anexos:

Soluções para a tarefa

Respondido por polentone007
1

Resposta:

-345

Explicação passo a passo:

Podemos usar a regra de sarrus:

\left[\begin{array}{ccc}2&-1&2\\5&9&5\\9&0&-6\end{array}\right]

Vamos duplicar a 1°e 2° colunas

\left[\begin{array}{ccc}2&-1&2\\5&9&5\\9&0&-6\end{array}\right]\left[\begin{array}{ccc}2&-1\\5&9\\9&0\end{array}\right]

Multiplicaremos os termos partindo do a11 até o a31 da seguinte maneira:

\left[\begin{array}{ccc}\boxed2&-1&2\\5&\boxed9&5\\9&0&\boxed{-6}\end{array}\right]\left[\begin{array}{ccc}2&-1\\5&9\\9&0\end{array}\right]

2*9*(-6)=-108

\left[\begin{array}{ccc}2&\boxed{-1}&2\\5&9&\boxed5\\\9&0&-6\end{array}\right]\left[\begin{array}{ccc}2&-1\\5&9\\\boxed9&0\end{array}\right]

-1*5*9=-45

\left[\begin{array}{ccc}2&-1&\boxed2\\5&9&5\\9&0&-6\end{array}\right]\left[\begin{array}{ccc}2&-1\\\boxed5&9\\9&\boxed0\end{array}\right]

2*5*0=0

Somando todos esses termos:-108+(-45)-0=-153

Agora faremos ao contrário:

\left[\begin{array}{ccc}2&-1&2\\5&9&5\\9&0&\boxed{-6}\end{array}\right]\left[\begin{array}{ccc}2&\boxed{-1}\\\boxed5&9\\9&0\end{array}\right]

-1*5*(-6)=30

\left[\begin{array}{ccc}2&-1&2\\5&9&\boxed5\\9&\boxed0&-6\end{array}\right]\left[\begin{array}{ccc}\boxed2&-1\\5&9\\9&0\end{array}\right]

2*5*0=0

\left[\begin{array}{ccc}2&-1&\boxed2\\5&\boxed9&5\\\boxed9&0&-6\end{array}\right]\left[\begin{array}{ccc}2&-1\\5&9\\9&0\end{array}\right]

2*9*9=162

Agora subtraindo os termos:

-30-0-162=-192

Somando as duas partes: -192-153=-345

Perguntas interessantes