Matemática, perguntado por graudi, 1 ano atrás

determine o valor de x no triangulo ABC, sabendo que sua area é
165m ^{2}

Anexos:

Soluções para a tarefa

Respondido por kaduceks
13
Bom dia,

Para resolver este problema precisamos da equação da área de um triângulo qualquer:

a= \frac{L*h}{2}

Onde L é a aresta da base e h é a altura do triângulo.

Como possuimos as três incognitas, vamos substitui-las na equação:

165= \frac{\sqrt{275}*x*\sqrt{11}}{2} \\ \\
 \frac{165*2}{\sqrt{275*11}} =x

Para remover a raiz da parte da baixo da divisão, vamos multiplicar em cima e em baixo pela mesma raiz:

x=\frac{165*2*\sqrt{275*11}}{\sqrt{275*11}*\sqrt{275*11}} \\ \\ x= \frac{165*2*\sqrt{275*11}}{275*11}= \frac{33*2*\sqrt{275*11}}{55*11}

Abrindo 275 em seus multiplos podemos simplificar bem a questão:

275=55*5=5*5*11 \\ \\ x= \frac{33*2*\sqrt{5*5*11*11}}{55*11}=\frac{3*2*\sqrt{5^2*11^2}}{55} \\ \\ x=\frac{3*2*5*11}{55}=3*2=6

Portanto x é igual a 6!

Espero ter ajudado. Bons estudos!
Perguntas interessantes