Determine o valor de x no triángulo abaixo.
Soluções para a tarefa
Resposta: resposta 6
Explicação passo-a-passo: A Lei dos Senos determina que num triângulo qualquer, a relação do seno de um ângulo é sempre proporcional à medida do lado oposto a esse ângulo.
Esse teorema demonstra que num mesmo triângulo a razão entre o valor de um lado e o seno de seu ângulo oposto será sempre constante.
Assim, para um triângulo ABC de lados a, b, c, a Lei dos Senos admite as seguintes relações da figura abaixo.
chamando a=6 e c= x e sabendo que a soma dos ângulos de um triângulo é igual a 180°, podemos descobrir que o ângulo "oculto" vale 120°
sabendo que sen30°= e que sen120°=√3/2, temos:
cortando o denominador comum, ficamos com:
6√3 / √3 = x, cancelando √3
x=6
(desculpa se a explicação n ficou muito boa, é pq não tenho total domínio sobre as funções de site)