Determine o valor de X no triângulo a seguir:
Soluções para a tarefa
a/sena = b/senb
100/sen45 = x/sen120 , seno120 é igual ao seno de 60 = √3/2
100/(√2/2) = x/(√3/2)
200/√2 = 2x/√3
2x = (200/√2)/√3
2x = 200/√6
x = (200/√6)/ 2
x = 100/√6
x = 100√6/6
x = 50√6/3←←
espero ter ajudado! :]
Resposta:
Os triângulos são polígonos formados por três lados. Dentro do conjunto de todos os polígonos, os triângulos são os mais simples, por apresentarem menos lados, mas possuem propriedades e características complexas. Uma delas se refere à soma de seus ângulos internos, que é sempre igual a 180º, independentemente do formato do triângulo, de seu tamanho ou de qualquer outra característica.
Sendo assim, um triângulo ABC, com ângulos internos a, b e c, possui a seguinte propriedade:
a + b + c = 180
Essa propriedade não é usada para descobrir que a soma dos ângulos internos é igual a 180°, mas é usada para descobrir a medida de um dos ângulos do triângulo quando se conhece as medidas dos outros dois.
Exemplos
1º exemplo – Qual é a medida do ângulo α na figura a seguir?
Solução:
Sabendo que os ângulos internos de um triângulo totalizam 180°, podemos escrever:
α + 50 + 50 = 180
α = 180 – 50 – 50
α = 80°
2º exemplo – Calcule o valor de x no triângulo a seguir.
Solução:
Como já sabemos, a soma dos ângulos internos de um triângulo é 180°. Portanto, podemos escrever:
2x + 3x + 4x = 180
9x = 180
x = 180
9
x = 20
Demonstração
O procedimento usado para mostrar que a soma dos ângulos internos de um triângulo é sempre igual a 180° será feito a seguir em etapas e baseia-se em outro conhecimento: dos ângulos formados em um feixe de retas paralelas cortadas por uma transversal. Para compreender bem a demonstração, lembre-se: ângulos alternos internos são congruentes. Além disso, lembre-se também de que as semirretas que definem um ângulo raso (de 180°) formam uma reta. Isso significa que qualquer ângulo observado sobre uma reta terá essa medida.